416 lines
13 KiB
C++
416 lines
13 KiB
C++
|
|
/*
|
||
|
|
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
|
||
|
|
*
|
||
|
|
* Use of this source code is governed by a BSD-style license
|
||
|
|
* that can be found in the LICENSE file in the root of the source
|
||
|
|
* tree. An additional intellectual property rights grant can be found
|
||
|
|
* in the file PATENTS. All contributing project authors may
|
||
|
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
|
*/
|
||
|
|
#include "test/time_controller/simulated_time_controller.h"
|
||
|
|
|
||
|
|
#include <algorithm>
|
||
|
|
#include <deque>
|
||
|
|
#include <list>
|
||
|
|
#include <map>
|
||
|
|
#include <set>
|
||
|
|
#include <string>
|
||
|
|
#include <thread>
|
||
|
|
#include <vector>
|
||
|
|
|
||
|
|
#include "absl/memory/memory.h"
|
||
|
|
#include "absl/strings/string_view.h"
|
||
|
|
|
||
|
|
namespace webrtc {
|
||
|
|
|
||
|
|
namespace sim_time_impl {
|
||
|
|
class SimulatedSequenceRunner : public ProcessThread, public TaskQueueBase {
|
||
|
|
public:
|
||
|
|
SimulatedSequenceRunner(SimulatedTimeControllerImpl* handler,
|
||
|
|
absl::string_view queue_name)
|
||
|
|
: handler_(handler), name_(queue_name) {}
|
||
|
|
~SimulatedSequenceRunner() override { handler_->Unregister(this); }
|
||
|
|
|
||
|
|
// Provides next run time.
|
||
|
|
Timestamp GetNextRunTime() const;
|
||
|
|
|
||
|
|
// Iterates through delayed tasks and modules and moves them to the ready set
|
||
|
|
// if they are supposed to execute by |at time|.
|
||
|
|
void UpdateReady(Timestamp at_time);
|
||
|
|
// Runs all ready tasks and modules and updates next run time.
|
||
|
|
void Run(Timestamp at_time);
|
||
|
|
|
||
|
|
// TaskQueueBase interface
|
||
|
|
void Delete() override;
|
||
|
|
// Note: PostTask is also in ProcessThread interface.
|
||
|
|
void PostTask(std::unique_ptr<QueuedTask> task) override;
|
||
|
|
void PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
||
|
|
uint32_t milliseconds) override;
|
||
|
|
|
||
|
|
// ProcessThread interface
|
||
|
|
void Start() override;
|
||
|
|
void Stop() override;
|
||
|
|
void WakeUp(Module* module) override;
|
||
|
|
void RegisterModule(Module* module, const rtc::Location& from) override;
|
||
|
|
void DeRegisterModule(Module* module) override;
|
||
|
|
|
||
|
|
private:
|
||
|
|
Timestamp GetCurrentTime() const { return handler_->CurrentTime(); }
|
||
|
|
void RunReadyTasks(Timestamp at_time) RTC_LOCKS_EXCLUDED(lock_);
|
||
|
|
void RunReadyModules(Timestamp at_time) RTC_EXCLUSIVE_LOCKS_REQUIRED(lock_);
|
||
|
|
void UpdateNextRunTime() RTC_EXCLUSIVE_LOCKS_REQUIRED(lock_);
|
||
|
|
|
||
|
|
SimulatedTimeControllerImpl* const handler_;
|
||
|
|
const std::string name_;
|
||
|
|
|
||
|
|
rtc::CriticalSection lock_;
|
||
|
|
|
||
|
|
std::deque<std::unique_ptr<QueuedTask>> ready_tasks_ RTC_GUARDED_BY(lock_);
|
||
|
|
std::multimap<Timestamp, std::unique_ptr<QueuedTask>> delayed_tasks_
|
||
|
|
RTC_GUARDED_BY(lock_);
|
||
|
|
|
||
|
|
bool process_thread_running_ RTC_GUARDED_BY(lock_) = false;
|
||
|
|
std::set<Module*> stopped_modules_ RTC_GUARDED_BY(lock_);
|
||
|
|
std::set<Module*> ready_modules_ RTC_GUARDED_BY(lock_);
|
||
|
|
std::multimap<Timestamp, Module*> delayed_modules_ RTC_GUARDED_BY(lock_);
|
||
|
|
|
||
|
|
Timestamp next_run_time_ RTC_GUARDED_BY(lock_) = Timestamp::PlusInfinity();
|
||
|
|
};
|
||
|
|
|
||
|
|
Timestamp SimulatedSequenceRunner::GetNextRunTime() const {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
return next_run_time_;
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::UpdateReady(Timestamp at_time) {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
for (auto it = delayed_tasks_.begin();
|
||
|
|
it != delayed_tasks_.end() && it->first <= at_time;) {
|
||
|
|
ready_tasks_.emplace_back(std::move(it->second));
|
||
|
|
it = delayed_tasks_.erase(it);
|
||
|
|
}
|
||
|
|
for (auto it = delayed_modules_.begin();
|
||
|
|
it != delayed_modules_.end() && it->first <= at_time;) {
|
||
|
|
ready_modules_.insert(it->second);
|
||
|
|
it = delayed_modules_.erase(it);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::Run(Timestamp at_time) {
|
||
|
|
RunReadyTasks(at_time);
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
RunReadyModules(at_time);
|
||
|
|
UpdateNextRunTime();
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::Delete() {
|
||
|
|
{
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
ready_tasks_.clear();
|
||
|
|
delayed_tasks_.clear();
|
||
|
|
}
|
||
|
|
delete this;
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::RunReadyTasks(Timestamp at_time) {
|
||
|
|
std::deque<std::unique_ptr<QueuedTask>> ready_tasks;
|
||
|
|
{
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
ready_tasks.swap(ready_tasks_);
|
||
|
|
}
|
||
|
|
if (!ready_tasks.empty()) {
|
||
|
|
CurrentTaskQueueSetter set_current(this);
|
||
|
|
for (auto& ready : ready_tasks) {
|
||
|
|
bool delete_task = ready->Run();
|
||
|
|
if (delete_task) {
|
||
|
|
ready.reset();
|
||
|
|
} else {
|
||
|
|
ready.release();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::RunReadyModules(Timestamp at_time) {
|
||
|
|
if (!ready_modules_.empty()) {
|
||
|
|
CurrentTaskQueueSetter set_current(this);
|
||
|
|
for (auto* module : ready_modules_) {
|
||
|
|
module->Process();
|
||
|
|
Timestamp next_run_time =
|
||
|
|
at_time + TimeDelta::ms(module->TimeUntilNextProcess());
|
||
|
|
delayed_modules_.emplace(next_run_time, module);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
ready_modules_.clear();
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::UpdateNextRunTime() {
|
||
|
|
if (!ready_tasks_.empty() || !ready_modules_.empty()) {
|
||
|
|
next_run_time_ = Timestamp::MinusInfinity();
|
||
|
|
} else {
|
||
|
|
next_run_time_ = Timestamp::PlusInfinity();
|
||
|
|
if (!delayed_tasks_.empty())
|
||
|
|
next_run_time_ = std::min(next_run_time_, delayed_tasks_.begin()->first);
|
||
|
|
if (!delayed_modules_.empty())
|
||
|
|
next_run_time_ =
|
||
|
|
std::min(next_run_time_, delayed_modules_.begin()->first);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::PostTask(std::unique_ptr<QueuedTask> task) {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
ready_tasks_.emplace_back(std::move(task));
|
||
|
|
next_run_time_ = Timestamp::MinusInfinity();
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
||
|
|
uint32_t milliseconds) {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
Timestamp target_time = GetCurrentTime() + TimeDelta::ms(milliseconds);
|
||
|
|
delayed_tasks_.emplace(target_time, std::move(task));
|
||
|
|
next_run_time_ = std::min(next_run_time_, target_time);
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::Start() {
|
||
|
|
std::set<Module*> starting;
|
||
|
|
{
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
if (process_thread_running_)
|
||
|
|
return;
|
||
|
|
process_thread_running_ = true;
|
||
|
|
starting.swap(stopped_modules_);
|
||
|
|
}
|
||
|
|
for (auto& module : starting)
|
||
|
|
module->ProcessThreadAttached(this);
|
||
|
|
|
||
|
|
Timestamp at_time = GetCurrentTime();
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
for (auto& module : starting)
|
||
|
|
delayed_modules_.insert(
|
||
|
|
{at_time + TimeDelta::ms(module->TimeUntilNextProcess()), module});
|
||
|
|
UpdateNextRunTime();
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::Stop() {
|
||
|
|
std::set<Module*> stopping;
|
||
|
|
{
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
process_thread_running_ = false;
|
||
|
|
|
||
|
|
for (auto* ready : ready_modules_)
|
||
|
|
stopped_modules_.insert(ready);
|
||
|
|
ready_modules_.clear();
|
||
|
|
|
||
|
|
for (auto& delayed : delayed_modules_)
|
||
|
|
stopped_modules_.insert(delayed.second);
|
||
|
|
delayed_modules_.clear();
|
||
|
|
|
||
|
|
stopping = stopped_modules_;
|
||
|
|
}
|
||
|
|
for (auto& module : stopping)
|
||
|
|
module->ProcessThreadAttached(nullptr);
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::WakeUp(Module* module) {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
// If we already are planning to run this module as soon as possible, we don't
|
||
|
|
// need to do anything.
|
||
|
|
if (ready_modules_.find(module) != ready_modules_.end())
|
||
|
|
return;
|
||
|
|
|
||
|
|
for (auto it = delayed_modules_.begin(); it != delayed_modules_.end(); ++it) {
|
||
|
|
if (it->second == module) {
|
||
|
|
delayed_modules_.erase(it);
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
Timestamp next_time =
|
||
|
|
GetCurrentTime() + TimeDelta::ms(module->TimeUntilNextProcess());
|
||
|
|
delayed_modules_.insert({next_time, module});
|
||
|
|
next_run_time_ = std::min(next_run_time_, next_time);
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::RegisterModule(Module* module,
|
||
|
|
const rtc::Location& from) {
|
||
|
|
module->ProcessThreadAttached(this);
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
if (!process_thread_running_) {
|
||
|
|
stopped_modules_.insert(module);
|
||
|
|
} else {
|
||
|
|
Timestamp next_time =
|
||
|
|
GetCurrentTime() + TimeDelta::ms(module->TimeUntilNextProcess());
|
||
|
|
delayed_modules_.insert({next_time, module});
|
||
|
|
next_run_time_ = std::min(next_run_time_, next_time);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedSequenceRunner::DeRegisterModule(Module* module) {
|
||
|
|
bool modules_running;
|
||
|
|
{
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
if (!process_thread_running_) {
|
||
|
|
stopped_modules_.erase(module);
|
||
|
|
} else {
|
||
|
|
ready_modules_.erase(module);
|
||
|
|
for (auto it = delayed_modules_.begin(); it != delayed_modules_.end();
|
||
|
|
++it) {
|
||
|
|
if (it->second == module) {
|
||
|
|
delayed_modules_.erase(it);
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
modules_running = process_thread_running_;
|
||
|
|
}
|
||
|
|
if (modules_running)
|
||
|
|
module->ProcessThreadAttached(nullptr);
|
||
|
|
}
|
||
|
|
|
||
|
|
SimulatedTimeControllerImpl::SimulatedTimeControllerImpl(Timestamp start_time)
|
||
|
|
: thread_id_(rtc::CurrentThreadId()), current_time_(start_time) {}
|
||
|
|
|
||
|
|
SimulatedTimeControllerImpl::~SimulatedTimeControllerImpl() = default;
|
||
|
|
|
||
|
|
std::unique_ptr<TaskQueueBase, TaskQueueDeleter>
|
||
|
|
SimulatedTimeControllerImpl::CreateTaskQueue(
|
||
|
|
absl::string_view name,
|
||
|
|
TaskQueueFactory::Priority priority) const {
|
||
|
|
// TODO(srte): Remove the const cast when the interface is made mutable.
|
||
|
|
auto mutable_this = const_cast<SimulatedTimeControllerImpl*>(this);
|
||
|
|
auto task_queue = std::unique_ptr<SimulatedSequenceRunner, TaskQueueDeleter>(
|
||
|
|
new SimulatedSequenceRunner(mutable_this, name));
|
||
|
|
rtc::CritScope lock(&mutable_this->lock_);
|
||
|
|
mutable_this->runners_.insert(task_queue.get());
|
||
|
|
return task_queue;
|
||
|
|
}
|
||
|
|
|
||
|
|
std::unique_ptr<ProcessThread> SimulatedTimeControllerImpl::CreateProcessThread(
|
||
|
|
const char* thread_name) {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
auto process_thread =
|
||
|
|
absl::make_unique<SimulatedSequenceRunner>(this, thread_name);
|
||
|
|
runners_.insert(process_thread.get());
|
||
|
|
return process_thread;
|
||
|
|
}
|
||
|
|
|
||
|
|
std::vector<SimulatedSequenceRunner*>
|
||
|
|
SimulatedTimeControllerImpl::GetNextReadyRunner(Timestamp current_time) {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
std::vector<SimulatedSequenceRunner*> ready;
|
||
|
|
for (auto* runner : runners_) {
|
||
|
|
if (yielded_.find(runner) == yielded_.end() &&
|
||
|
|
runner->GetNextRunTime() <= current_time) {
|
||
|
|
ready.push_back(runner);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
return ready;
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedTimeControllerImpl::YieldExecution() {
|
||
|
|
if (rtc::CurrentThreadId() == thread_id_) {
|
||
|
|
RTC_DCHECK_RUN_ON(&thread_checker_);
|
||
|
|
// When we yield, we don't want to risk executing further tasks on the
|
||
|
|
// currently executing task queue. If there's a ready task that also yields,
|
||
|
|
// it's added to this set as well and only tasks on the remaining task
|
||
|
|
// queues are executed.
|
||
|
|
auto inserted = yielded_.insert(TaskQueueBase::Current());
|
||
|
|
RTC_DCHECK(inserted.second);
|
||
|
|
RunReadyRunners();
|
||
|
|
yielded_.erase(inserted.first);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedTimeControllerImpl::RunReadyRunners() {
|
||
|
|
RTC_DCHECK_RUN_ON(&thread_checker_);
|
||
|
|
Timestamp current_time = CurrentTime();
|
||
|
|
// We repeat until we have no ready left to handle tasks posted by ready
|
||
|
|
// runners.
|
||
|
|
while (true) {
|
||
|
|
auto ready = GetNextReadyRunner(current_time);
|
||
|
|
if (ready.empty())
|
||
|
|
break;
|
||
|
|
for (auto* runner : ready) {
|
||
|
|
runner->UpdateReady(current_time);
|
||
|
|
runner->Run(current_time);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
Timestamp SimulatedTimeControllerImpl::CurrentTime() const {
|
||
|
|
rtc::CritScope lock(&time_lock_);
|
||
|
|
return current_time_;
|
||
|
|
}
|
||
|
|
|
||
|
|
Timestamp SimulatedTimeControllerImpl::NextRunTime() const {
|
||
|
|
Timestamp current_time = CurrentTime();
|
||
|
|
Timestamp next_time = Timestamp::PlusInfinity();
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
for (auto* runner : runners_) {
|
||
|
|
Timestamp next_run_time = runner->GetNextRunTime();
|
||
|
|
if (next_run_time <= current_time)
|
||
|
|
return current_time;
|
||
|
|
next_time = std::min(next_time, next_run_time);
|
||
|
|
}
|
||
|
|
return next_time;
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedTimeControllerImpl::AdvanceTime(Timestamp target_time) {
|
||
|
|
rtc::CritScope time_lock(&time_lock_);
|
||
|
|
RTC_DCHECK(target_time >= current_time_);
|
||
|
|
current_time_ = target_time;
|
||
|
|
}
|
||
|
|
|
||
|
|
void SimulatedTimeControllerImpl::Unregister(SimulatedSequenceRunner* runner) {
|
||
|
|
rtc::CritScope lock(&lock_);
|
||
|
|
RTC_CHECK(runners_.erase(runner));
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace sim_time_impl
|
||
|
|
|
||
|
|
GlobalSimulatedTimeController::GlobalSimulatedTimeController(
|
||
|
|
Timestamp start_time)
|
||
|
|
: sim_clock_(start_time.us()), impl_(start_time) {
|
||
|
|
global_clock_.SetTimeMicros(start_time.us());
|
||
|
|
}
|
||
|
|
|
||
|
|
GlobalSimulatedTimeController::~GlobalSimulatedTimeController() = default;
|
||
|
|
|
||
|
|
Clock* GlobalSimulatedTimeController::GetClock() {
|
||
|
|
return &sim_clock_;
|
||
|
|
}
|
||
|
|
|
||
|
|
TaskQueueFactory* GlobalSimulatedTimeController::GetTaskQueueFactory() {
|
||
|
|
return &impl_;
|
||
|
|
}
|
||
|
|
|
||
|
|
std::unique_ptr<ProcessThread>
|
||
|
|
GlobalSimulatedTimeController::CreateProcessThread(const char* thread_name) {
|
||
|
|
return impl_.CreateProcessThread(thread_name);
|
||
|
|
}
|
||
|
|
|
||
|
|
void GlobalSimulatedTimeController::Sleep(TimeDelta duration) {
|
||
|
|
rtc::ScopedYieldPolicy yield_policy(&impl_);
|
||
|
|
Timestamp current_time = impl_.CurrentTime();
|
||
|
|
Timestamp target_time = current_time + duration;
|
||
|
|
RTC_DCHECK_EQ(current_time.us(), rtc::TimeMicros());
|
||
|
|
while (current_time < target_time) {
|
||
|
|
impl_.RunReadyRunners();
|
||
|
|
Timestamp next_time = std::min(impl_.NextRunTime(), target_time);
|
||
|
|
impl_.AdvanceTime(next_time);
|
||
|
|
auto delta = next_time - current_time;
|
||
|
|
current_time = next_time;
|
||
|
|
sim_clock_.AdvanceTimeMicroseconds(delta.us());
|
||
|
|
global_clock_.AdvanceTimeMicros(delta.us());
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void GlobalSimulatedTimeController::InvokeWithControlledYield(
|
||
|
|
std::function<void()> closure) {
|
||
|
|
rtc::ScopedYieldPolicy yield_policy(&impl_);
|
||
|
|
closure();
|
||
|
|
}
|
||
|
|
|
||
|
|
// namespace sim_time_impl
|
||
|
|
|
||
|
|
} // namespace webrtc
|