webrtc_m130/modules/video_coding/jitter_buffer.cc

894 lines
30 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/jitter_buffer.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "api/units/timestamp.h"
#include "modules/video_coding/frame_buffer.h"
#include "modules/video_coding/include/video_coding.h"
#include "modules/video_coding/internal_defines.h"
#include "modules/video_coding/jitter_buffer_common.h"
#include "modules/video_coding/packet.h"
#include "modules/video_coding/timing/inter_frame_delay.h"
#include "modules/video_coding/timing/jitter_estimator.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
// Use this rtt if no value has been reported.
static const int64_t kDefaultRtt = 200;
typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
bool IsKeyFrame(FrameListPair pair) {
return pair.second->FrameType() == VideoFrameType::kVideoFrameKey;
}
bool HasNonEmptyState(FrameListPair pair) {
return pair.second->GetState() != kStateEmpty;
}
void FrameList::InsertFrame(VCMFrameBuffer* frame) {
insert(rbegin().base(), FrameListPair(frame->Timestamp(), frame));
}
VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
FrameList::iterator it = find(timestamp);
if (it == end())
return NULL;
VCMFrameBuffer* frame = it->second;
erase(it);
return frame;
}
VCMFrameBuffer* FrameList::Front() const {
return begin()->second;
}
VCMFrameBuffer* FrameList::Back() const {
return rbegin()->second;
}
int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
UnorderedFrameList* free_frames) {
int drop_count = 0;
FrameList::iterator it = begin();
while (!empty()) {
// Throw at least one frame.
it->second->Reset();
free_frames->push_back(it->second);
erase(it++);
++drop_count;
if (it != end() &&
it->second->FrameType() == VideoFrameType::kVideoFrameKey) {
*key_frame_it = it;
return drop_count;
}
}
*key_frame_it = end();
return drop_count;
}
void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
UnorderedFrameList* free_frames) {
while (!empty()) {
VCMFrameBuffer* oldest_frame = Front();
bool remove_frame = false;
if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
// This frame is empty, try to update the last decoded state and drop it
// if successful.
remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
} else {
remove_frame = decoding_state->IsOldFrame(oldest_frame);
}
if (!remove_frame) {
break;
}
free_frames->push_back(oldest_frame);
erase(begin());
}
}
void FrameList::Reset(UnorderedFrameList* free_frames) {
while (!empty()) {
begin()->second->Reset();
free_frames->push_back(begin()->second);
erase(begin());
}
}
VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
std::unique_ptr<EventWrapper> event,
const FieldTrialsView& field_trials)
: clock_(clock),
running_(false),
frame_event_(std::move(event)),
max_number_of_frames_(kStartNumberOfFrames),
free_frames_(),
decodable_frames_(),
incomplete_frames_(),
last_decoded_state_(),
first_packet_since_reset_(true),
num_consecutive_old_packets_(0),
num_packets_(0),
num_duplicated_packets_(0),
jitter_estimate_(clock, field_trials),
missing_sequence_numbers_(SequenceNumberLessThan()),
latest_received_sequence_number_(0),
max_nack_list_size_(0),
max_packet_age_to_nack_(0),
max_incomplete_time_ms_(0),
average_packets_per_frame_(0.0f),
frame_counter_(0) {
for (int i = 0; i < kStartNumberOfFrames; i++)
free_frames_.push_back(new VCMFrameBuffer());
}
VCMJitterBuffer::~VCMJitterBuffer() {
Stop();
for (UnorderedFrameList::iterator it = free_frames_.begin();
it != free_frames_.end(); ++it) {
delete *it;
}
for (FrameList::iterator it = incomplete_frames_.begin();
it != incomplete_frames_.end(); ++it) {
delete it->second;
}
for (FrameList::iterator it = decodable_frames_.begin();
it != decodable_frames_.end(); ++it) {
delete it->second;
}
}
void VCMJitterBuffer::Start() {
MutexLock lock(&mutex_);
running_ = true;
num_consecutive_old_packets_ = 0;
num_packets_ = 0;
num_duplicated_packets_ = 0;
// Start in a non-signaled state.
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
waiting_for_completion_.latest_packet_time = -1;
first_packet_since_reset_ = true;
last_decoded_state_.Reset();
decodable_frames_.Reset(&free_frames_);
incomplete_frames_.Reset(&free_frames_);
}
void VCMJitterBuffer::Stop() {
MutexLock lock(&mutex_);
running_ = false;
last_decoded_state_.Reset();
// Make sure we wake up any threads waiting on these events.
frame_event_->Set();
}
bool VCMJitterBuffer::Running() const {
MutexLock lock(&mutex_);
return running_;
}
void VCMJitterBuffer::Flush() {
MutexLock lock(&mutex_);
decodable_frames_.Reset(&free_frames_);
incomplete_frames_.Reset(&free_frames_);
last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
num_consecutive_old_packets_ = 0;
// Also reset the jitter and delay estimates
jitter_estimate_.Reset();
inter_frame_delay_.Reset();
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
waiting_for_completion_.latest_packet_time = -1;
first_packet_since_reset_ = true;
missing_sequence_numbers_.clear();
}
int VCMJitterBuffer::num_packets() const {
MutexLock lock(&mutex_);
return num_packets_;
}
int VCMJitterBuffer::num_duplicated_packets() const {
MutexLock lock(&mutex_);
return num_duplicated_packets_;
}
// Returns immediately or a `max_wait_time_ms` ms event hang waiting for a
// complete frame, `max_wait_time_ms` decided by caller.
VCMEncodedFrame* VCMJitterBuffer::NextCompleteFrame(uint32_t max_wait_time_ms) {
MutexLock lock(&mutex_);
if (!running_) {
return nullptr;
}
CleanUpOldOrEmptyFrames();
if (decodable_frames_.empty() ||
decodable_frames_.Front()->GetState() != kStateComplete) {
const int64_t end_wait_time_ms =
clock_->TimeInMilliseconds() + max_wait_time_ms;
int64_t wait_time_ms = max_wait_time_ms;
while (wait_time_ms > 0) {
mutex_.Unlock();
const EventTypeWrapper ret =
frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
mutex_.Lock();
if (ret == kEventSignaled) {
// Are we shutting down the jitter buffer?
if (!running_) {
return nullptr;
}
// Finding oldest frame ready for decoder.
CleanUpOldOrEmptyFrames();
if (decodable_frames_.empty() ||
decodable_frames_.Front()->GetState() != kStateComplete) {
wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
} else {
break;
}
} else {
break;
}
}
}
if (decodable_frames_.empty() ||
decodable_frames_.Front()->GetState() != kStateComplete) {
return nullptr;
}
return decodable_frames_.Front();
}
VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
MutexLock lock(&mutex_);
if (!running_) {
return NULL;
}
// Extract the frame with the desired timestamp.
VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
bool continuous = true;
if (!frame) {
frame = incomplete_frames_.PopFrame(timestamp);
if (frame)
continuous = last_decoded_state_.ContinuousFrame(frame);
else
return NULL;
}
// Frame pulled out from jitter buffer, update the jitter estimate.
const bool retransmitted = (frame->GetNackCount() > 0);
if (retransmitted) {
jitter_estimate_.FrameNacked();
} else if (frame->size() > 0) {
// Ignore retransmitted and empty frames.
if (waiting_for_completion_.latest_packet_time >= 0) {
UpdateJitterEstimate(waiting_for_completion_, true);
}
if (frame->GetState() == kStateComplete) {
UpdateJitterEstimate(*frame, false);
} else {
// Wait for this one to get complete.
waiting_for_completion_.frame_size = frame->size();
waiting_for_completion_.latest_packet_time = frame->LatestPacketTimeMs();
waiting_for_completion_.timestamp = frame->Timestamp();
}
}
// The state must be changed to decoding before cleaning up zero sized
// frames to avoid empty frames being cleaned up and then given to the
// decoder. Propagates the missing_frame bit.
frame->PrepareForDecode(continuous);
// We have a frame - update the last decoded state and nack list.
last_decoded_state_.SetState(frame);
DropPacketsFromNackList(last_decoded_state_.sequence_num());
UpdateAveragePacketsPerFrame(frame->NumPackets());
return frame;
}
// Release frame when done with decoding. Should never be used to release
// frames from within the jitter buffer.
void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
RTC_CHECK(frame != nullptr);
MutexLock lock(&mutex_);
VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
RecycleFrameBuffer(frame_buffer);
}
// Gets frame to use for this timestamp. If no match, get empty frame.
VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
VCMFrameBuffer** frame,
FrameList** frame_list) {
*frame = incomplete_frames_.PopFrame(packet.timestamp);
if (*frame != NULL) {
*frame_list = &incomplete_frames_;
return kNoError;
}
*frame = decodable_frames_.PopFrame(packet.timestamp);
if (*frame != NULL) {
*frame_list = &decodable_frames_;
return kNoError;
}
*frame_list = NULL;
// No match, return empty frame.
*frame = GetEmptyFrame();
if (*frame == NULL) {
// No free frame! Try to reclaim some...
RTC_LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
bool found_key_frame = RecycleFramesUntilKeyFrame();
*frame = GetEmptyFrame();
RTC_CHECK(*frame);
if (!found_key_frame) {
RecycleFrameBuffer(*frame);
return kFlushIndicator;
}
}
(*frame)->Reset();
return kNoError;
}
int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
bool* retransmitted) const {
RTC_DCHECK(retransmitted);
MutexLock lock(&mutex_);
const VCMFrameBuffer* frame_buffer =
static_cast<const VCMFrameBuffer*>(frame);
*retransmitted = (frame_buffer->GetNackCount() > 0);
return frame_buffer->LatestPacketTimeMs();
}
VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
bool* retransmitted) {
MutexLock lock(&mutex_);
++num_packets_;
// Does this packet belong to an old frame?
if (last_decoded_state_.IsOldPacket(&packet)) {
// Account only for media packets.
if (packet.sizeBytes > 0) {
num_consecutive_old_packets_++;
}
// Update last decoded sequence number if the packet arrived late and
// belongs to a frame with a timestamp equal to the last decoded
// timestamp.
last_decoded_state_.UpdateOldPacket(&packet);
DropPacketsFromNackList(last_decoded_state_.sequence_num());
Fix jitter buffer bug around out-of-order packets and non-RTX padding. tl;dr - non-continuous frames (due to padding) would get stuck as incomplete if the previous complete frame arrived and was decoded before the padding arrived.This fix re-checks the incomplete frame list for continuous frames after old packets arrive. When padding is enabled and RTX is not, padding is sent as empty RTP packets tacked onto the end of completed frames (meaning: same timestamp, but after a packet with the marker bit set). Given the following set of circumstances, codified in the new unit test method, a frame can get permanently stuck in the incomplete frames list: - Frame A decoded (packets 94-95). Next expected sequence number is 96. - Frame C arrives (packets 100-101) and is marked complete. It isn't continuous, since it starts at 100, so it's placed in the incomplete frame list. - Frame B arrives (packets 96-97) and is complete, since 97 has a marker bit. Turns out that packets 98-99 are padding, but the receiver doesn't know that. - Frame B is decoded, removed from the decodable frames list, and last decoded state is updated. - Packets 98-99 arrive. They hit the IsOldPacket check and update the last decoded state, but they don't trigger FindAndInsertContinuousFrames. - Further packets/frames arrive and complete, but FindAndInsertContinuousFrames only runs on frames that are newer than the newly completed frame. In this state, Frame C is permanently stuck as incomplete, so the jitter buffer overall is stuck until max NACK age (default: 450 packets), the max NACK list size (default: 200 packets), or a keyframe arrives and IsContinuous returns true for the keyframe. (Before the November refactoring, Frame B wouldn't have to have been decoded for the bug to trigger; just having a complete continuous frame at any time before the padding arrived would cause this state, as FindAndInsertContinuousFrames was only called when the frame originally became continuous and was inserted into the decodable frames list. Post refactoring, the frame is removed/re-added to the decodable list on every padding packet that arrives) BUG= R=stefan@webrtc.org Review URL: https://webrtc-codereview.appspot.com/50959004 Cr-Commit-Position: refs/heads/master@{#9264}
2015-05-22 14:03:00 -07:00
// Also see if this old packet made more incomplete frames continuous.
FindAndInsertContinuousFramesWithState(last_decoded_state_);
if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
RTC_LOG(LS_WARNING)
<< num_consecutive_old_packets_
<< " consecutive old packets received. Flushing the jitter buffer.";
Flush();
return kFlushIndicator;
}
return kOldPacket;
}
num_consecutive_old_packets_ = 0;
VCMFrameBuffer* frame;
FrameList* frame_list;
const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list);
if (error != kNoError)
return error;
Timestamp now = clock_->CurrentTime();
// We are keeping track of the first and latest seq numbers, and
// the number of wraps to be able to calculate how many packets we expect.
if (first_packet_since_reset_) {
// Now it's time to start estimating jitter
// reset the delay estimate.
inter_frame_delay_.Reset();
}
// Empty packets may bias the jitter estimate (lacking size component),
// therefore don't let empty packet trigger the following updates:
if (packet.video_header.frame_type != VideoFrameType::kEmptyFrame) {
if (waiting_for_completion_.timestamp == packet.timestamp) {
// This can get bad if we have a lot of duplicate packets,
// we will then count some packet multiple times.
waiting_for_completion_.frame_size += packet.sizeBytes;
waiting_for_completion_.latest_packet_time = now.ms();
} else if (waiting_for_completion_.latest_packet_time >= 0 &&
waiting_for_completion_.latest_packet_time + 2000 <= now.ms()) {
// A packet should never be more than two seconds late
UpdateJitterEstimate(waiting_for_completion_, true);
waiting_for_completion_.latest_packet_time = -1;
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
}
}
VCMFrameBufferStateEnum previous_state = frame->GetState();
// Insert packet.
FrameData frame_data;
frame_data.rtt_ms = kDefaultRtt;
frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
VCMFrameBufferEnum buffer_state =
frame->InsertPacket(packet, now.ms(), frame_data);
if (buffer_state > 0) {
if (first_packet_since_reset_) {
latest_received_sequence_number_ = packet.seqNum;
first_packet_since_reset_ = false;
} else {
if (IsPacketRetransmitted(packet)) {
frame->IncrementNackCount();
}
if (!UpdateNackList(packet.seqNum) &&
packet.video_header.frame_type != VideoFrameType::kVideoFrameKey) {
buffer_state = kFlushIndicator;
}
latest_received_sequence_number_ =
LatestSequenceNumber(latest_received_sequence_number_, packet.seqNum);
}
}
// Is the frame already in the decodable list?
bool continuous = IsContinuous(*frame);
switch (buffer_state) {
case kGeneralError:
case kTimeStampError:
case kSizeError: {
RecycleFrameBuffer(frame);
break;
}
case kCompleteSession: {
if (previous_state != kStateComplete) {
if (continuous) {
// Signal that we have a complete session.
frame_event_->Set();
}
}
*retransmitted = (frame->GetNackCount() > 0);
if (continuous) {
decodable_frames_.InsertFrame(frame);
FindAndInsertContinuousFrames(*frame);
} else {
incomplete_frames_.InsertFrame(frame);
}
break;
}
case kIncomplete: {
if (frame->GetState() == kStateEmpty &&
last_decoded_state_.UpdateEmptyFrame(frame)) {
RecycleFrameBuffer(frame);
return kNoError;
} else {
incomplete_frames_.InsertFrame(frame);
}
break;
}
case kNoError:
case kOutOfBoundsPacket:
case kDuplicatePacket: {
// Put back the frame where it came from.
if (frame_list != NULL) {
frame_list->InsertFrame(frame);
} else {
RecycleFrameBuffer(frame);
}
++num_duplicated_packets_;
break;
}
case kFlushIndicator:
RecycleFrameBuffer(frame);
return kFlushIndicator;
default:
RTC_DCHECK_NOTREACHED();
}
return buffer_state;
}
bool VCMJitterBuffer::IsContinuousInState(
const VCMFrameBuffer& frame,
const VCMDecodingState& decoding_state) const {
// Is this frame complete and continuous?
return (frame.GetState() == kStateComplete) &&
decoding_state.ContinuousFrame(&frame);
}
bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
if (IsContinuousInState(frame, last_decoded_state_)) {
return true;
}
VCMDecodingState decoding_state;
decoding_state.CopyFrom(last_decoded_state_);
for (FrameList::const_iterator it = decodable_frames_.begin();
it != decodable_frames_.end(); ++it) {
VCMFrameBuffer* decodable_frame = it->second;
if (IsNewerTimestamp(decodable_frame->Timestamp(), frame.Timestamp())) {
break;
}
decoding_state.SetState(decodable_frame);
if (IsContinuousInState(frame, decoding_state)) {
return true;
}
}
return false;
}
void VCMJitterBuffer::FindAndInsertContinuousFrames(
const VCMFrameBuffer& new_frame) {
VCMDecodingState decoding_state;
decoding_state.CopyFrom(last_decoded_state_);
decoding_state.SetState(&new_frame);
Fix jitter buffer bug around out-of-order packets and non-RTX padding. tl;dr - non-continuous frames (due to padding) would get stuck as incomplete if the previous complete frame arrived and was decoded before the padding arrived.This fix re-checks the incomplete frame list for continuous frames after old packets arrive. When padding is enabled and RTX is not, padding is sent as empty RTP packets tacked onto the end of completed frames (meaning: same timestamp, but after a packet with the marker bit set). Given the following set of circumstances, codified in the new unit test method, a frame can get permanently stuck in the incomplete frames list: - Frame A decoded (packets 94-95). Next expected sequence number is 96. - Frame C arrives (packets 100-101) and is marked complete. It isn't continuous, since it starts at 100, so it's placed in the incomplete frame list. - Frame B arrives (packets 96-97) and is complete, since 97 has a marker bit. Turns out that packets 98-99 are padding, but the receiver doesn't know that. - Frame B is decoded, removed from the decodable frames list, and last decoded state is updated. - Packets 98-99 arrive. They hit the IsOldPacket check and update the last decoded state, but they don't trigger FindAndInsertContinuousFrames. - Further packets/frames arrive and complete, but FindAndInsertContinuousFrames only runs on frames that are newer than the newly completed frame. In this state, Frame C is permanently stuck as incomplete, so the jitter buffer overall is stuck until max NACK age (default: 450 packets), the max NACK list size (default: 200 packets), or a keyframe arrives and IsContinuous returns true for the keyframe. (Before the November refactoring, Frame B wouldn't have to have been decoded for the bug to trigger; just having a complete continuous frame at any time before the padding arrived would cause this state, as FindAndInsertContinuousFrames was only called when the frame originally became continuous and was inserted into the decodable frames list. Post refactoring, the frame is removed/re-added to the decodable list on every padding packet that arrives) BUG= R=stefan@webrtc.org Review URL: https://webrtc-codereview.appspot.com/50959004 Cr-Commit-Position: refs/heads/master@{#9264}
2015-05-22 14:03:00 -07:00
FindAndInsertContinuousFramesWithState(decoding_state);
}
void VCMJitterBuffer::FindAndInsertContinuousFramesWithState(
const VCMDecodingState& original_decoded_state) {
// Copy original_decoded_state so we can move the state forward with each
// decodable frame we find.
VCMDecodingState decoding_state;
decoding_state.CopyFrom(original_decoded_state);
// When temporal layers are available, we search for a complete or decodable
// frame until we hit one of the following:
// 1. Continuous base or sync layer.
// 2. The end of the list was reached.
for (FrameList::iterator it = incomplete_frames_.begin();
it != incomplete_frames_.end();) {
VCMFrameBuffer* frame = it->second;
Fix jitter buffer bug around out-of-order packets and non-RTX padding. tl;dr - non-continuous frames (due to padding) would get stuck as incomplete if the previous complete frame arrived and was decoded before the padding arrived.This fix re-checks the incomplete frame list for continuous frames after old packets arrive. When padding is enabled and RTX is not, padding is sent as empty RTP packets tacked onto the end of completed frames (meaning: same timestamp, but after a packet with the marker bit set). Given the following set of circumstances, codified in the new unit test method, a frame can get permanently stuck in the incomplete frames list: - Frame A decoded (packets 94-95). Next expected sequence number is 96. - Frame C arrives (packets 100-101) and is marked complete. It isn't continuous, since it starts at 100, so it's placed in the incomplete frame list. - Frame B arrives (packets 96-97) and is complete, since 97 has a marker bit. Turns out that packets 98-99 are padding, but the receiver doesn't know that. - Frame B is decoded, removed from the decodable frames list, and last decoded state is updated. - Packets 98-99 arrive. They hit the IsOldPacket check and update the last decoded state, but they don't trigger FindAndInsertContinuousFrames. - Further packets/frames arrive and complete, but FindAndInsertContinuousFrames only runs on frames that are newer than the newly completed frame. In this state, Frame C is permanently stuck as incomplete, so the jitter buffer overall is stuck until max NACK age (default: 450 packets), the max NACK list size (default: 200 packets), or a keyframe arrives and IsContinuous returns true for the keyframe. (Before the November refactoring, Frame B wouldn't have to have been decoded for the bug to trigger; just having a complete continuous frame at any time before the padding arrived would cause this state, as FindAndInsertContinuousFrames was only called when the frame originally became continuous and was inserted into the decodable frames list. Post refactoring, the frame is removed/re-added to the decodable list on every padding packet that arrives) BUG= R=stefan@webrtc.org Review URL: https://webrtc-codereview.appspot.com/50959004 Cr-Commit-Position: refs/heads/master@{#9264}
2015-05-22 14:03:00 -07:00
if (IsNewerTimestamp(original_decoded_state.time_stamp(),
frame->Timestamp())) {
++it;
continue;
}
if (IsContinuousInState(*frame, decoding_state)) {
decodable_frames_.InsertFrame(frame);
incomplete_frames_.erase(it++);
decoding_state.SetState(frame);
} else if (frame->TemporalId() <= 0) {
break;
} else {
++it;
}
}
}
uint32_t VCMJitterBuffer::EstimatedJitterMs() {
MutexLock lock(&mutex_);
const double rtt_mult = 1.0f;
return jitter_estimate_.GetJitterEstimate(rtt_mult, absl::nullopt).ms();
}
void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
int max_packet_age_to_nack,
int max_incomplete_time_ms) {
MutexLock lock(&mutex_);
RTC_DCHECK_GE(max_packet_age_to_nack, 0);
RTC_DCHECK_GE(max_incomplete_time_ms_, 0);
max_nack_list_size_ = max_nack_list_size;
max_packet_age_to_nack_ = max_packet_age_to_nack;
max_incomplete_time_ms_ = max_incomplete_time_ms;
}
int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
if (incomplete_frames_.empty()) {
return 0;
}
uint32_t start_timestamp = incomplete_frames_.Front()->Timestamp();
if (!decodable_frames_.empty()) {
start_timestamp = decodable_frames_.Back()->Timestamp();
}
return incomplete_frames_.Back()->Timestamp() - start_timestamp;
}
uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
const VCMFrameBuffer& frame) const {
RTC_DCHECK_GE(frame.GetLowSeqNum(), 0);
if (frame.HaveFirstPacket())
return frame.GetLowSeqNum();
// This estimate is not accurate if more than one packet with lower sequence
// number is lost.
return frame.GetLowSeqNum() - 1;
}
std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) {
MutexLock lock(&mutex_);
*request_key_frame = false;
if (last_decoded_state_.in_initial_state()) {
VCMFrameBuffer* next_frame = NextFrame();
const bool first_frame_is_key =
next_frame &&
next_frame->FrameType() == VideoFrameType::kVideoFrameKey &&
next_frame->HaveFirstPacket();
if (!first_frame_is_key) {
bool have_non_empty_frame =
decodable_frames_.end() != find_if(decodable_frames_.begin(),
decodable_frames_.end(),
HasNonEmptyState);
if (!have_non_empty_frame) {
have_non_empty_frame =
incomplete_frames_.end() != find_if(incomplete_frames_.begin(),
incomplete_frames_.end(),
HasNonEmptyState);
}
bool found_key_frame = RecycleFramesUntilKeyFrame();
if (!found_key_frame) {
*request_key_frame = have_non_empty_frame;
return std::vector<uint16_t>();
}
}
}
if (TooLargeNackList()) {
*request_key_frame = !HandleTooLargeNackList();
}
if (max_incomplete_time_ms_ > 0) {
int non_continuous_incomplete_duration =
NonContinuousOrIncompleteDuration();
if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
RTC_LOG_F(LS_WARNING) << "Too long non-decodable duration: "
<< non_continuous_incomplete_duration << " > "
<< 90 * max_incomplete_time_ms_;
FrameList::reverse_iterator rit = find_if(
incomplete_frames_.rbegin(), incomplete_frames_.rend(), IsKeyFrame);
if (rit == incomplete_frames_.rend()) {
// Request a key frame if we don't have one already.
*request_key_frame = true;
return std::vector<uint16_t>();
} else {
// Skip to the last key frame. If it's incomplete we will start
// NACKing it.
// Note that the estimated low sequence number is correct for VP8
// streams because only the first packet of a key frame is marked.
last_decoded_state_.Reset();
DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
}
}
}
std::vector<uint16_t> nack_list(missing_sequence_numbers_.begin(),
missing_sequence_numbers_.end());
return nack_list;
}
VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
if (!decodable_frames_.empty())
return decodable_frames_.Front();
if (!incomplete_frames_.empty())
return incomplete_frames_.Front();
return NULL;
}
bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
// Make sure we don't add packets which are already too old to be decoded.
if (!last_decoded_state_.in_initial_state()) {
latest_received_sequence_number_ = LatestSequenceNumber(
latest_received_sequence_number_, last_decoded_state_.sequence_num());
}
if (IsNewerSequenceNumber(sequence_number,
latest_received_sequence_number_)) {
// Push any missing sequence numbers to the NACK list.
for (uint16_t i = latest_received_sequence_number_ + 1;
IsNewerSequenceNumber(sequence_number, i); ++i) {
missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
}
if (TooLargeNackList() && !HandleTooLargeNackList()) {
RTC_LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
return false;
}
if (MissingTooOldPacket(sequence_number) &&
!HandleTooOldPackets(sequence_number)) {
RTC_LOG(LS_WARNING)
<< "Requesting key frame due to missing too old packets";
return false;
}
} else {
missing_sequence_numbers_.erase(sequence_number);
}
return true;
}
bool VCMJitterBuffer::TooLargeNackList() const {
return missing_sequence_numbers_.size() > max_nack_list_size_;
}
bool VCMJitterBuffer::HandleTooLargeNackList() {
// Recycle frames until the NACK list is small enough. It is likely cheaper to
// request a key frame than to retransmit this many missing packets.
RTC_LOG_F(LS_WARNING) << "NACK list has grown too large: "
<< missing_sequence_numbers_.size() << " > "
<< max_nack_list_size_;
bool key_frame_found = false;
while (TooLargeNackList()) {
key_frame_found = RecycleFramesUntilKeyFrame();
}
return key_frame_found;
}
bool VCMJitterBuffer::MissingTooOldPacket(
uint16_t latest_sequence_number) const {
if (missing_sequence_numbers_.empty()) {
return false;
}
const uint16_t age_of_oldest_missing_packet =
latest_sequence_number - *missing_sequence_numbers_.begin();
// Recycle frames if the NACK list contains too old sequence numbers as
// the packets may have already been dropped by the sender.
return age_of_oldest_missing_packet > max_packet_age_to_nack_;
}
bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
bool key_frame_found = false;
const uint16_t age_of_oldest_missing_packet =
latest_sequence_number - *missing_sequence_numbers_.begin();
RTC_LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
<< age_of_oldest_missing_packet << " > "
<< max_packet_age_to_nack_;
while (MissingTooOldPacket(latest_sequence_number)) {
key_frame_found = RecycleFramesUntilKeyFrame();
}
return key_frame_found;
}
void VCMJitterBuffer::DropPacketsFromNackList(
uint16_t last_decoded_sequence_number) {
// Erase all sequence numbers from the NACK list which we won't need any
// longer.
missing_sequence_numbers_.erase(
missing_sequence_numbers_.begin(),
missing_sequence_numbers_.upper_bound(last_decoded_sequence_number));
}
VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
if (free_frames_.empty()) {
if (!TryToIncreaseJitterBufferSize()) {
return NULL;
}
}
VCMFrameBuffer* frame = free_frames_.front();
free_frames_.pop_front();
return frame;
}
bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
if (max_number_of_frames_ >= kMaxNumberOfFrames)
return false;
free_frames_.push_back(new VCMFrameBuffer());
++max_number_of_frames_;
return true;
}
// Recycle oldest frames up to a key frame, used if jitter buffer is completely
// full.
bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
// First release incomplete frames, and only release decodable frames if there
// are no incomplete ones.
FrameList::iterator key_frame_it;
bool key_frame_found = false;
int dropped_frames = 0;
dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
&key_frame_it, &free_frames_);
key_frame_found = key_frame_it != incomplete_frames_.end();
if (dropped_frames == 0) {
dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
&key_frame_it, &free_frames_);
key_frame_found = key_frame_it != decodable_frames_.end();
}
if (key_frame_found) {
RTC_LOG(LS_INFO) << "Found key frame while dropping frames.";
// Reset last decoded state to make sure the next frame decoded is a key
// frame, and start NACKing from here.
last_decoded_state_.Reset();
DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
} else if (decodable_frames_.empty()) {
// All frames dropped. Reset the decoding state and clear missing sequence
// numbers as we're starting fresh.
last_decoded_state_.Reset();
missing_sequence_numbers_.clear();
}
return key_frame_found;
}
void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
if (frame_counter_ > kFastConvergeThreshold) {
average_packets_per_frame_ =
average_packets_per_frame_ * (1 - kNormalConvergeMultiplier) +
current_number_packets * kNormalConvergeMultiplier;
} else if (frame_counter_ > 0) {
average_packets_per_frame_ =
average_packets_per_frame_ * (1 - kFastConvergeMultiplier) +
current_number_packets * kFastConvergeMultiplier;
frame_counter_++;
} else {
average_packets_per_frame_ = current_number_packets;
frame_counter_++;
}
}
// Must be called under the critical section `mutex_`.
void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
&free_frames_);
incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
&free_frames_);
if (!last_decoded_state_.in_initial_state()) {
DropPacketsFromNackList(last_decoded_state_.sequence_num());
}
}
// Must be called from within `mutex_`.
bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
return missing_sequence_numbers_.find(packet.seqNum) !=
missing_sequence_numbers_.end();
}
// Must be called under the critical section `mutex_`. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
bool incomplete_frame) {
if (sample.latest_packet_time == -1) {
return;
}
UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
sample.frame_size, incomplete_frame);
}
// Must be called under the critical section mutex_. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
bool incomplete_frame) {
if (frame.LatestPacketTimeMs() == -1) {
return;
}
// No retransmitted frames should be a part of the jitter
// estimate.
UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.Timestamp(),
frame.size(), incomplete_frame);
}
// Must be called under the critical section `mutex_`. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(int64_t latest_packet_time_ms,
uint32_t timestamp,
unsigned int frame_size,
bool incomplete_frame) {
if (latest_packet_time_ms == -1) {
return;
}
auto frame_delay = inter_frame_delay_.CalculateDelay(
timestamp, Timestamp::Millis(latest_packet_time_ms));
bool not_reordered = frame_delay.has_value();
// Filter out frames which have been reordered in time by the network
if (not_reordered) {
// Update the jitter estimate with the new samples
jitter_estimate_.UpdateEstimate(*frame_delay, DataSize::Bytes(frame_size),
incomplete_frame);
}
}
void VCMJitterBuffer::RecycleFrameBuffer(VCMFrameBuffer* frame) {
frame->Reset();
free_frames_.push_back(frame);
}
} // namespace webrtc