webrtc_m130/call/adaptation/resource_adaptation_processor.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

421 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright 2020 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "call/adaptation/resource_adaptation_processor.h"
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
#include <algorithm>
#include <string>
#include <utility>
#include "absl/algorithm/container.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/string_builder.h"
namespace webrtc {
ResourceAdaptationProcessor::MitigationResultAndLogMessage::
MitigationResultAndLogMessage()
: result(MitigationResult::kAdaptationApplied), message() {}
ResourceAdaptationProcessor::MitigationResultAndLogMessage::
MitigationResultAndLogMessage(MitigationResult result, std::string message)
: result(result), message(std::move(message)) {}
ResourceAdaptationProcessor::ResourceAdaptationProcessor(
VideoStreamInputStateProvider* input_state_provider,
VideoStreamEncoderObserver* encoder_stats_observer)
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
: sequence_checker_(),
is_resource_adaptation_enabled_(false),
input_state_provider_(input_state_provider),
encoder_stats_observer_(encoder_stats_observer),
resources_(),
degradation_preference_(DegradationPreference::DISABLED),
effective_degradation_preference_(DegradationPreference::DISABLED),
is_screenshare_(false),
stream_adapter_(std::make_unique<VideoStreamAdapter>()),
last_reported_source_restrictions_(),
previous_mitigation_results_(),
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
processing_in_progress_(false) {
sequence_checker_.Detach();
}
ResourceAdaptationProcessor::~ResourceAdaptationProcessor() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!is_resource_adaptation_enabled_);
RTC_DCHECK(adaptation_listeners_.empty())
<< "There are listener(s) depending on a ResourceAdaptationProcessor "
<< "being destroyed.";
RTC_DCHECK(resources_.empty())
<< "There are resource(s) attached to a ResourceAdaptationProcessor "
<< "being destroyed.";
}
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
void ResourceAdaptationProcessor::InitializeOnResourceAdaptationQueue() {
// Allows |sequence_checker_| to attach to the resource adaptation queue.
// The caller is responsible for ensuring that this is the current queue.
RTC_DCHECK_RUN_ON(&sequence_checker_);
}
DegradationPreference ResourceAdaptationProcessor::degradation_preference()
const {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
return degradation_preference_;
}
DegradationPreference
ResourceAdaptationProcessor::effective_degradation_preference() const {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
return effective_degradation_preference_;
}
void ResourceAdaptationProcessor::StartResourceAdaptation() {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
if (is_resource_adaptation_enabled_)
return;
for (const auto& resource : resources_) {
resource->SetResourceListener(this);
}
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
is_resource_adaptation_enabled_ = true;
}
void ResourceAdaptationProcessor::StopResourceAdaptation() {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
if (!is_resource_adaptation_enabled_)
return;
for (const auto& resource : resources_) {
resource->SetResourceListener(nullptr);
}
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
is_resource_adaptation_enabled_ = false;
}
void ResourceAdaptationProcessor::AddAdaptationListener(
ResourceAdaptationProcessorListener* adaptation_listener) {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(std::find(adaptation_listeners_.begin(),
adaptation_listeners_.end(),
adaptation_listener) == adaptation_listeners_.end());
adaptation_listeners_.push_back(adaptation_listener);
}
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
void ResourceAdaptationProcessor::RemoveAdaptationListener(
ResourceAdaptationProcessorListener* adaptation_listener) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
auto it = std::find(adaptation_listeners_.begin(),
adaptation_listeners_.end(), adaptation_listener);
RTC_DCHECK(it != adaptation_listeners_.end());
adaptation_listeners_.erase(it);
}
void ResourceAdaptationProcessor::AddResource(
rtc::scoped_refptr<Resource> resource) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
// TODO(hbos): Allow adding resources while |is_resource_adaptation_enabled_|
// by registering as a listener of the resource on adding it.
RTC_DCHECK(!is_resource_adaptation_enabled_);
RTC_DCHECK(std::find(resources_.begin(), resources_.end(), resource) ==
resources_.end());
resources_.push_back(resource);
}
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
void ResourceAdaptationProcessor::RemoveResource(
rtc::scoped_refptr<Resource> resource) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
// TODO(hbos): Allow removing resources while
// |is_resource_adaptation_enabled_| by unregistering as a listener of the
// resource on removing it.
RTC_DCHECK(!is_resource_adaptation_enabled_);
auto it = std::find(resources_.begin(), resources_.end(), resource);
RTC_DCHECK(it != resources_.end());
resources_.erase(it);
}
void ResourceAdaptationProcessor::SetDegradationPreference(
DegradationPreference degradation_preference) {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
degradation_preference_ = degradation_preference;
MaybeUpdateEffectiveDegradationPreference();
}
void ResourceAdaptationProcessor::SetIsScreenshare(bool is_screenshare) {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
is_screenshare_ = is_screenshare;
MaybeUpdateEffectiveDegradationPreference();
}
void ResourceAdaptationProcessor::MaybeUpdateEffectiveDegradationPreference() {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
effective_degradation_preference_ =
(is_screenshare_ &&
degradation_preference_ == DegradationPreference::BALANCED)
? DegradationPreference::MAINTAIN_RESOLUTION
: degradation_preference_;
stream_adapter_->SetDegradationPreference(effective_degradation_preference_);
MaybeUpdateVideoSourceRestrictions(nullptr);
}
void ResourceAdaptationProcessor::ResetVideoSourceRestrictions() {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_LOG(INFO) << "Resetting restrictions";
stream_adapter_->ClearRestrictions();
adaptations_counts_by_resource_.clear();
MaybeUpdateVideoSourceRestrictions(nullptr);
}
void ResourceAdaptationProcessor::MaybeUpdateVideoSourceRestrictions(
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
rtc::scoped_refptr<Resource> reason) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
VideoSourceRestrictions new_source_restrictions =
FilterRestrictionsByDegradationPreference(
stream_adapter_->source_restrictions(),
effective_degradation_preference_);
if (last_reported_source_restrictions_ != new_source_restrictions) {
RTC_LOG(INFO) << "Reporting new restrictions (in "
<< DegradationPreferenceToString(
effective_degradation_preference_)
<< "): " << new_source_restrictions.ToString();
last_reported_source_restrictions_ = std::move(new_source_restrictions);
for (auto* adaptation_listener : adaptation_listeners_) {
adaptation_listener->OnVideoSourceRestrictionsUpdated(
last_reported_source_restrictions_,
stream_adapter_->adaptation_counters(), reason);
}
if (reason) {
UpdateResourceDegradationCounts(reason);
}
}
}
void ResourceAdaptationProcessor::OnResourceUsageStateMeasured(
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
rtc::scoped_refptr<Resource> resource) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(resource->UsageState().has_value());
ResourceUsageState usage_state = resource->UsageState().value();
MitigationResultAndLogMessage result_and_message;
switch (usage_state) {
case ResourceUsageState::kOveruse:
result_and_message = OnResourceOveruse(resource);
break;
case ResourceUsageState::kUnderuse:
result_and_message = OnResourceUnderuse(resource);
break;
}
// Maybe log the result of the operation.
auto it = previous_mitigation_results_.find(resource.get());
if (it != previous_mitigation_results_.end() &&
it->second == result_and_message.result) {
// This resource has previously reported the same result and we haven't
// successfully adapted since - don't log to avoid spam.
return;
}
RTC_LOG(INFO) << "Resource \"" << resource->Name() << "\" signalled "
<< ResourceUsageStateToString(usage_state) << ". "
<< result_and_message.message;
if (result_and_message.result == MitigationResult::kAdaptationApplied) {
previous_mitigation_results_.clear();
} else {
previous_mitigation_results_.insert(
std::make_pair(resource.get(), result_and_message.result));
}
}
bool ResourceAdaptationProcessor::HasSufficientInputForAdaptation(
const VideoStreamInputState& input_state) const {
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
RTC_DCHECK_RUN_ON(&sequence_checker_);
return input_state.HasInputFrameSizeAndFramesPerSecond() &&
(effective_degradation_preference_ !=
DegradationPreference::MAINTAIN_RESOLUTION ||
input_state.frames_per_second() >= kMinFrameRateFps);
}
ResourceAdaptationProcessor::MitigationResultAndLogMessage
ResourceAdaptationProcessor::OnResourceUnderuse(
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
rtc::scoped_refptr<Resource> reason_resource) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!processing_in_progress_);
processing_in_progress_ = true;
// Clear all usage states. In order to re-run adaptation logic, resources need
// to provide new resource usage measurements.
// TODO(hbos): Support not unconditionally clearing usage states by having the
// ResourceAdaptationProcessor check in on its resources at certain intervals.
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
for (const auto& resource : resources_) {
resource->ClearUsageState();
}
if (effective_degradation_preference_ == DegradationPreference::DISABLED) {
processing_in_progress_ = false;
return MitigationResultAndLogMessage(
MitigationResult::kDisabled,
"Not adapting up because DegradationPreference is disabled");
}
VideoStreamInputState input_state = input_state_provider_->InputState();
if (!HasSufficientInputForAdaptation(input_state)) {
processing_in_progress_ = false;
return MitigationResultAndLogMessage(
MitigationResult::kInsufficientInput,
"Not adapting up because input is insufficient");
}
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
if (!IsResourceAllowedToAdaptUp(reason_resource)) {
processing_in_progress_ = false;
return MitigationResultAndLogMessage(
MitigationResult::kRejectedByAdaptationCounts,
"Not adapting up because this resource has not previously adapted down "
"(according to adaptation counters)");
}
// Update video input states and encoder settings for accurate adaptation.
stream_adapter_->SetInput(input_state);
// How can this stream be adapted up?
Adaptation adaptation = stream_adapter_->GetAdaptationUp();
if (adaptation.status() != Adaptation::Status::kValid) {
processing_in_progress_ = false;
rtc::StringBuilder message;
message << "Not adapting up because VideoStreamAdapter returned "
<< Adaptation::StatusToString(adaptation.status());
return MitigationResultAndLogMessage(MitigationResult::kRejectedByAdapter,
message.Release());
}
// Are all resources OK with this adaptation being applied?
VideoSourceRestrictions restrictions_before =
stream_adapter_->source_restrictions();
VideoSourceRestrictions restrictions_after =
stream_adapter_->PeekNextRestrictions(adaptation);
for (const auto& resource : resources_) {
if (!resource->IsAdaptationUpAllowed(input_state, restrictions_before,
restrictions_after, reason_resource)) {
processing_in_progress_ = false;
rtc::StringBuilder message;
message << "Not adapting up because resource \"" << resource->Name()
<< "\" disallowed it";
return MitigationResultAndLogMessage(
MitigationResult::kRejectedByResource, message.Release());
}
}
// Apply adaptation.
stream_adapter_->ApplyAdaptation(adaptation);
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
for (const auto& resource : resources_) {
resource->OnAdaptationApplied(input_state, restrictions_before,
restrictions_after, reason_resource);
}
// Update VideoSourceRestrictions based on adaptation. This also informs the
// |adaptation_listeners_|.
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
MaybeUpdateVideoSourceRestrictions(reason_resource);
processing_in_progress_ = false;
rtc::StringBuilder message;
message << "Adapted up successfully. Unfiltered adaptations: "
<< stream_adapter_->adaptation_counters().ToString();
return MitigationResultAndLogMessage(MitigationResult::kAdaptationApplied,
message.Release());
}
ResourceAdaptationProcessor::MitigationResultAndLogMessage
ResourceAdaptationProcessor::OnResourceOveruse(
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
rtc::scoped_refptr<Resource> reason_resource) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!processing_in_progress_);
processing_in_progress_ = true;
// Clear all usage states. In order to re-run adaptation logic, resources need
// to provide new resource usage measurements.
// TODO(hbos): Support not unconditionally clearing usage states by having the
// ResourceAdaptationProcessor check in on its resources at certain intervals.
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
for (const auto& resource : resources_) {
resource->ClearUsageState();
}
if (effective_degradation_preference_ == DegradationPreference::DISABLED) {
processing_in_progress_ = false;
return MitigationResultAndLogMessage(
MitigationResult::kDisabled,
"Not adapting down because DegradationPreference is disabled");
}
VideoStreamInputState input_state = input_state_provider_->InputState();
if (!HasSufficientInputForAdaptation(input_state)) {
processing_in_progress_ = false;
return MitigationResultAndLogMessage(
MitigationResult::kInsufficientInput,
"Not adapting down because input is insufficient");
}
// Update video input states and encoder settings for accurate adaptation.
stream_adapter_->SetInput(input_state);
// How can this stream be adapted up?
Adaptation adaptation = stream_adapter_->GetAdaptationDown();
if (adaptation.min_pixel_limit_reached()) {
encoder_stats_observer_->OnMinPixelLimitReached();
}
if (adaptation.status() != Adaptation::Status::kValid) {
processing_in_progress_ = false;
rtc::StringBuilder message;
message << "Not adapting down because VideoStreamAdapter returned "
<< Adaptation::StatusToString(adaptation.status());
return MitigationResultAndLogMessage(MitigationResult::kRejectedByAdapter,
message.Release());
}
// Apply adaptation.
VideoSourceRestrictions restrictions_before =
stream_adapter_->source_restrictions();
VideoSourceRestrictions restrictions_after =
stream_adapter_->PeekNextRestrictions(adaptation);
stream_adapter_->ApplyAdaptation(adaptation);
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
for (const auto& resource : resources_) {
resource->OnAdaptationApplied(input_state, restrictions_before,
restrictions_after, reason_resource);
}
// Update VideoSourceRestrictions based on adaptation. This also informs the
// |adaptation_listeners_|.
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
MaybeUpdateVideoSourceRestrictions(reason_resource);
processing_in_progress_ = false;
rtc::StringBuilder message;
message << "Adapted down successfully. Unfiltered adaptations: "
<< stream_adapter_->adaptation_counters().ToString();
return MitigationResultAndLogMessage(MitigationResult::kAdaptationApplied,
message.Release());
}
void ResourceAdaptationProcessor::TriggerAdaptationDueToFrameDroppedDueToSize(
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
rtc::scoped_refptr<Resource> reason_resource) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_LOG(INFO) << "TriggerAdaptationDueToFrameDroppedDueToSize called";
VideoAdaptationCounters counters_before =
stream_adapter_->adaptation_counters();
OnResourceOveruse(reason_resource);
if (degradation_preference_ == DegradationPreference::BALANCED &&
stream_adapter_->adaptation_counters().fps_adaptations >
counters_before.fps_adaptations) {
// Oops, we adapted frame rate. Adapt again, maybe it will adapt resolution!
// Though this is not guaranteed...
OnResourceOveruse(reason_resource);
}
if (stream_adapter_->adaptation_counters().resolution_adaptations >
counters_before.resolution_adaptations) {
encoder_stats_observer_->OnInitialQualityResolutionAdaptDown();
}
}
void ResourceAdaptationProcessor::UpdateResourceDegradationCounts(
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
rtc::scoped_refptr<Resource> resource) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(resource);
int delta = stream_adapter_->adaptation_counters().Total();
for (const auto& adaptations : adaptations_counts_by_resource_) {
delta -= adaptations.second;
}
// Default value is 0, inserts the value if missing.
adaptations_counts_by_resource_[resource] += delta;
RTC_DCHECK_GE(adaptations_counts_by_resource_[resource], 0);
}
bool ResourceAdaptationProcessor::IsResourceAllowedToAdaptUp(
[Adaptation] Make Resources reference counted and add more DCHECKs. In a future CL, adaptation processing and stream encoder resource management will happen on different task queues. When this is the case, asynchronous tasks will be posted in both directions and some resources will have internal states used on multiple threads. This CL makes the Resource class reference counted in order to support posting tasks to a different threads without risk of use-after-free when a posted task is executed with a delay. This is preferred over WeakPtr strategies because WeakPtrs are single-threaded and preferred over raw pointer usage because the reference counted approach enables more compile-time and run-time assurance. This is also "future proof"; when resources can be injected through public APIs, ownership needs to be shared between libwebrtc and the application (e.g. Chrome). To reduce the risk of making mistakes in the future CL, sequence checkers and task queue DCHECKs are added as well as other DCHECKs to make sure things have been cleaned up before destruction, e.g: - Processor gets a sequence checker. It is entirely single-threaded. - Processor must not have any attached listeners or resources on destruction. - Resources must not have any listeners on destruction. - The Manager, EncodeUsageResource and QualityScalerResource DCHECKs they are running on the encoder queue. - TODOs are added illustrating where we want to add PostTasks in the future CL. Lastly, upon VideoStreamEncoder::Stop() we delete the ResourceAdaptationProcessor. Because the Processor is already used in posted tasks, some if statements are added to ensure the Processor is not used after destruction. Bug: webrtc:11542, webrtc:11520 Change-Id: Ibaa8a61d86d87a71f477d1075a117c28d9d2d285 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/174760 Commit-Queue: Henrik Boström <hbos@webrtc.org> Reviewed-by: Evan Shrubsole <eshr@google.com> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/master@{#31217}
2020-05-11 16:29:22 +02:00
rtc::scoped_refptr<Resource> resource) const {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(resource);
const auto& adaptations = adaptations_counts_by_resource_.find(resource);
return adaptations != adaptations_counts_by_resource_.end() &&
adaptations->second > 0;
}
} // namespace webrtc