webrtc_m130/modules/audio_processing/agc2/input_volume_controller.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

751 lines
28 KiB
C++
Raw Normal View History

Copy AgcManagerDirect files to agc2 and rename the classes Copy AgcManagerDirect files from agc to agc2. Rename the newly created files and classes ahead of refactoring. Add a build target. This change is done to enable creating a class InputVolumeController based on AgcManagerDirect. The added temporary dependency on files in agc will be removed in https://webrtc-review.googlesource.com/c/src/+/278625. The exact copy of the files happened in the 1st patchset and it has been verified as follows: Checksum check: ``` $ git checkout main && git pull # Go back to the tree state before [1] landed $ git new-branch tmp $ git reset --hard 2235776597e2f47ec353ac911428eb9a54d64a10 $ cd modules/audio_processing/agc/ $ md5 agc_manager_direct* MD5 (agc_manager_direct.cc) = e661481a85f72596cae4599b62907f5b MD5 (agc_manager_direct.h) = bf68280e2d0f689b4ebcd665b5db6052 MD5 (agc_manager_direct_unittest.cc) = 6bf0bf45ff5e940b1a3bb37154f09269 ``` Patchset 1 (see [2]) ``` $ cd modules/audio_processing/agc2/ $ md5 input_volume_controlle* MD5 (input_volume_controller.cc) = e661481a85f72596cae4599b62907f5b MD5 (input_volume_controller.h) = bf68280e2d0f689b4ebcd665b5db6052 MD5 (input_volume_controller_unittest.cc) = 6bf0bf45ff5e940b1a3bb37154f09269 ``` [1] https://webrtc-review.googlesource.com/c/src/+/278781 [2] https://webrtc-review.googlesource.com/c/src/+/278624/1 Bug: webrtc:7494 Change-Id: I7804da899d18adf556b089c76a567ce27c299a62 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/278624 Reviewed-by: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Artem Titov <titovartem@webrtc.org> Commit-Queue: Hanna Silen <silen@webrtc.org> Cr-Commit-Position: refs/heads/main@{#38512}
2022-10-18 16:57:36 +02:00
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/input_volume_controller.h"
#include <algorithm>
#include <cmath>
#include "api/array_view.h"
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc/gain_control.h"
#include "modules/audio_processing/agc2/gain_map_internal.h"
#include "modules/audio_processing/include/audio_frame_view.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
// Amount of error we tolerate in the microphone level (presumably due to OS
// quantization) before we assume the user has manually adjusted the microphone.
constexpr int kLevelQuantizationSlack = 25;
constexpr int kDefaultCompressionGain = 7;
constexpr int kMaxCompressionGain = 12;
constexpr int kMinCompressionGain = 2;
// Controls the rate of compression changes towards the target.
constexpr float kCompressionGainStep = 0.05f;
constexpr int kMaxMicLevel = 255;
static_assert(kGainMapSize > kMaxMicLevel, "gain map too small");
constexpr int kMinMicLevel = 12;
// Prevent very large microphone level changes.
constexpr int kMaxResidualGainChange = 15;
// Maximum additional gain allowed to compensate for microphone level
// restrictions from clipping events.
constexpr int kSurplusCompressionGain = 6;
// Target speech level (dBFs) and speech probability threshold used to compute
// the RMS error override in `GetSpeechLevelErrorDb()`. These are only used for
// computing the error override and they are not passed to `agc_`.
// TODO(webrtc:7494): Move these to a config and pass in the ctor.
constexpr float kOverrideTargetSpeechLevelDbfs = -18.0f;
constexpr float kOverrideSpeechProbabilitySilenceThreshold = 0.5f;
// The minimum number of frames between `UpdateGain()` calls.
// TODO(webrtc:7494): Move this to a config and pass in the ctor with
// kOverrideWaitFrames = 100. Default value zero needed for the unit tests.
constexpr int kOverrideWaitFrames = 0;
using AnalogAgcConfig =
AudioProcessing::Config::GainController1::AnalogGainController;
// Returns whether a fall-back solution to choose the maximum level should be
// chosen.
bool UseMaxAnalogChannelLevel() {
return field_trial::IsEnabled("WebRTC-UseMaxAnalogAgcChannelLevel");
}
// If the "WebRTC-Audio-2ndAgcMinMicLevelExperiment" field trial is specified,
// parses it and returns a value between 0 and 255 depending on the field-trial
// string. Returns an unspecified value if the field trial is not specified, if
// disabled or if it cannot be parsed. Example:
// 'WebRTC-Audio-2ndAgcMinMicLevelExperiment/Enabled-80' => returns 80.
absl::optional<int> GetMinMicLevelOverride() {
constexpr char kMinMicLevelFieldTrial[] =
"WebRTC-Audio-2ndAgcMinMicLevelExperiment";
if (!webrtc::field_trial::IsEnabled(kMinMicLevelFieldTrial)) {
return absl::nullopt;
}
const auto field_trial_string =
webrtc::field_trial::FindFullName(kMinMicLevelFieldTrial);
int min_mic_level = -1;
sscanf(field_trial_string.c_str(), "Enabled-%d", &min_mic_level);
if (min_mic_level >= 0 && min_mic_level <= 255) {
return min_mic_level;
} else {
RTC_LOG(LS_WARNING) << "[agc] Invalid parameter for "
<< kMinMicLevelFieldTrial << ", ignored.";
return absl::nullopt;
}
}
int ClampLevel(int mic_level, int min_mic_level) {
return rtc::SafeClamp(mic_level, min_mic_level, kMaxMicLevel);
}
int LevelFromGainError(int gain_error, int level, int min_mic_level) {
RTC_DCHECK_GE(level, 0);
RTC_DCHECK_LE(level, kMaxMicLevel);
if (gain_error == 0) {
return level;
}
int new_level = level;
if (gain_error > 0) {
while (kGainMap[new_level] - kGainMap[level] < gain_error &&
new_level < kMaxMicLevel) {
++new_level;
}
} else {
while (kGainMap[new_level] - kGainMap[level] > gain_error &&
new_level > min_mic_level) {
--new_level;
}
}
return new_level;
}
// Returns the proportion of samples in the buffer which are at full-scale
// (and presumably clipped).
float ComputeClippedRatio(const float* const* audio,
size_t num_channels,
size_t samples_per_channel) {
RTC_DCHECK_GT(samples_per_channel, 0);
int num_clipped = 0;
for (size_t ch = 0; ch < num_channels; ++ch) {
int num_clipped_in_ch = 0;
for (size_t i = 0; i < samples_per_channel; ++i) {
RTC_DCHECK(audio[ch]);
if (audio[ch][i] >= 32767.0f || audio[ch][i] <= -32768.0f) {
++num_clipped_in_ch;
}
}
num_clipped = std::max(num_clipped, num_clipped_in_ch);
}
return static_cast<float>(num_clipped) / (samples_per_channel);
}
void LogClippingMetrics(int clipping_rate) {
RTC_LOG(LS_INFO) << "Input clipping rate: " << clipping_rate << "%";
RTC_HISTOGRAM_COUNTS_LINEAR(/*name=*/"WebRTC.Audio.Agc.InputClippingRate",
/*sample=*/clipping_rate, /*min=*/0, /*max=*/100,
/*bucket_count=*/50);
}
// Computes the speech level error in dB. `speech_level_dbfs` is required to be
// in the range [-90.0f, 30.0f] and `speech_probability` in the range
// [0.0f, 1.0f].
int GetSpeechLevelErrorDb(float speech_level_dbfs, float speech_probability) {
constexpr float kMinSpeechLevelDbfs = -90.0f;
constexpr float kMaxSpeechLevelDbfs = 30.0f;
RTC_DCHECK_GE(speech_level_dbfs, kMinSpeechLevelDbfs);
RTC_DCHECK_LE(speech_level_dbfs, kMaxSpeechLevelDbfs);
RTC_DCHECK_GE(speech_probability, 0.0f);
RTC_DCHECK_LE(speech_probability, 1.0f);
if (speech_probability < kOverrideSpeechProbabilitySilenceThreshold) {
return 0;
}
const float speech_level = rtc::SafeClamp<float>(
speech_level_dbfs, kMinSpeechLevelDbfs, kMaxSpeechLevelDbfs);
return std::round(kOverrideTargetSpeechLevelDbfs - speech_level);
}
} // namespace
RecommendedInputVolumeEstimator::RecommendedInputVolumeEstimator(
ApmDataDumper* data_dumper,
int startup_min_level,
int clipped_level_min,
bool disable_digital_adaptive,
int min_mic_level)
: min_mic_level_(min_mic_level),
disable_digital_adaptive_(disable_digital_adaptive),
agc_(std::make_unique<Agc>()),
max_level_(kMaxMicLevel),
max_compression_gain_(kMaxCompressionGain),
target_compression_(kDefaultCompressionGain),
compression_(target_compression_),
compression_accumulator_(compression_),
startup_min_level_(ClampLevel(startup_min_level, min_mic_level_)),
clipped_level_min_(clipped_level_min) {}
RecommendedInputVolumeEstimator::~RecommendedInputVolumeEstimator() = default;
void RecommendedInputVolumeEstimator::Initialize() {
max_level_ = kMaxMicLevel;
max_compression_gain_ = kMaxCompressionGain;
target_compression_ = disable_digital_adaptive_ ? 0 : kDefaultCompressionGain;
compression_ = disable_digital_adaptive_ ? 0 : target_compression_;
compression_accumulator_ = compression_;
capture_output_used_ = true;
check_volume_on_next_process_ = true;
frames_since_update_gain_ = 0;
is_first_frame_ = true;
}
void RecommendedInputVolumeEstimator::Process(
rtc::ArrayView<const int16_t> audio,
absl::optional<int> rms_error_override) {
new_compression_to_set_ = absl::nullopt;
if (check_volume_on_next_process_) {
check_volume_on_next_process_ = false;
// We have to wait until the first process call to check the volume,
// because Chromium doesn't guarantee it to be valid any earlier.
CheckVolumeAndReset();
}
agc_->Process(audio);
// Always check if `agc_` has a new error available. If yes, `agc_` gets
// reset.
// TODO(webrtc:7494) Replace the `agc_` call `GetRmsErrorDb()` with `Reset()`
// if an error override is used.
int rms_error = 0;
bool update_gain = agc_->GetRmsErrorDb(&rms_error);
if (rms_error_override.has_value()) {
if (is_first_frame_ || frames_since_update_gain_ < kOverrideWaitFrames) {
update_gain = false;
} else {
rms_error = *rms_error_override;
update_gain = true;
}
}
if (update_gain) {
UpdateGain(rms_error);
}
if (!disable_digital_adaptive_) {
UpdateCompressor();
}
is_first_frame_ = false;
if (frames_since_update_gain_ < kOverrideWaitFrames) {
++frames_since_update_gain_;
}
}
void RecommendedInputVolumeEstimator::HandleClipping(int clipped_level_step) {
RTC_DCHECK_GT(clipped_level_step, 0);
// Always decrease the maximum level, even if the current level is below
// threshold.
SetMaxLevel(std::max(clipped_level_min_, max_level_ - clipped_level_step));
if (log_to_histograms_) {
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.AgcClippingAdjustmentAllowed",
level_ - clipped_level_step >= clipped_level_min_);
}
if (level_ > clipped_level_min_) {
// Don't try to adjust the level if we're already below the limit. As
// a consequence, if the user has brought the level above the limit, we
// will still not react until the postproc updates the level.
SetLevel(std::max(clipped_level_min_, level_ - clipped_level_step));
// Reset the AGCs for all channels since the level has changed.
agc_->Reset();
frames_since_update_gain_ = 0;
is_first_frame_ = false;
}
}
void RecommendedInputVolumeEstimator::SetLevel(int new_level) {
int voe_level = recommended_input_volume_;
if (voe_level == 0) {
RTC_DLOG(LS_INFO)
<< "[agc] VolumeCallbacks returned level=0, taking no action.";
return;
}
if (voe_level < 0 || voe_level > kMaxMicLevel) {
RTC_LOG(LS_ERROR) << "VolumeCallbacks returned an invalid level="
<< voe_level;
return;
}
// Detect manual input volume adjustments by checking if the current level
// `voe_level` is outside of the `[level_ - kLevelQuantizationSlack, level_ +
// kLevelQuantizationSlack]` range where `level_` is the last input volume
// known by this gain controller.
if (voe_level > level_ + kLevelQuantizationSlack ||
voe_level < level_ - kLevelQuantizationSlack) {
RTC_DLOG(LS_INFO) << "[agc] Mic volume was manually adjusted. Updating "
"stored level from "
<< level_ << " to " << voe_level;
level_ = voe_level;
// Always allow the user to increase the volume.
if (level_ > max_level_) {
SetMaxLevel(level_);
}
// Take no action in this case, since we can't be sure when the volume
// was manually adjusted. The compressor will still provide some of the
// desired gain change.
agc_->Reset();
frames_since_update_gain_ = 0;
is_first_frame_ = false;
return;
}
new_level = std::min(new_level, max_level_);
if (new_level == level_) {
return;
}
recommended_input_volume_ = new_level;
RTC_DLOG(LS_INFO) << "[agc] voe_level=" << voe_level << ", level_=" << level_
<< ", new_level=" << new_level;
level_ = new_level;
}
void RecommendedInputVolumeEstimator::SetMaxLevel(int level) {
RTC_DCHECK_GE(level, clipped_level_min_);
max_level_ = level;
// Scale the `kSurplusCompressionGain` linearly across the restricted
// level range.
max_compression_gain_ =
kMaxCompressionGain + std::floor((1.f * kMaxMicLevel - max_level_) /
(kMaxMicLevel - clipped_level_min_) *
kSurplusCompressionGain +
0.5f);
RTC_DLOG(LS_INFO) << "[agc] max_level_=" << max_level_
<< ", max_compression_gain_=" << max_compression_gain_;
}
void RecommendedInputVolumeEstimator::HandleCaptureOutputUsedChange(
bool capture_output_used) {
if (capture_output_used_ == capture_output_used) {
return;
}
capture_output_used_ = capture_output_used;
if (capture_output_used) {
// When we start using the output, we should reset things to be safe.
check_volume_on_next_process_ = true;
}
}
int RecommendedInputVolumeEstimator::CheckVolumeAndReset() {
int level = recommended_input_volume_;
// Reasons for taking action at startup:
// 1) A person starting a call is expected to be heard.
// 2) Independent of interpretation of `level` == 0 we should raise it so the
// AGC can do its job properly.
if (level == 0 && !startup_) {
RTC_DLOG(LS_INFO)
<< "[agc] VolumeCallbacks returned level=0, taking no action.";
return 0;
}
if (level < 0 || level > kMaxMicLevel) {
RTC_LOG(LS_ERROR) << "[agc] VolumeCallbacks returned an invalid level="
<< level;
return -1;
}
RTC_DLOG(LS_INFO) << "[agc] Initial GetMicVolume()=" << level;
int minLevel = startup_ ? startup_min_level_ : min_mic_level_;
if (level < minLevel) {
level = minLevel;
RTC_DLOG(LS_INFO) << "[agc] Initial volume too low, raising to " << level;
recommended_input_volume_ = level;
}
agc_->Reset();
level_ = level;
startup_ = false;
frames_since_update_gain_ = 0;
is_first_frame_ = true;
return 0;
}
// Distributes the required gain change between the digital compression stage
// and volume slider. We use the compressor first, providing a slack region
// around the current slider position to reduce movement.
//
// If the slider needs to be moved, we check first if the user has adjusted
// it, in which case we take no action and cache the updated level.
void RecommendedInputVolumeEstimator::UpdateGain(int rms_error_db) {
int rms_error = rms_error_db;
// Always reset the counter regardless of whether the gain is changed
// or not. This matches with the bahvior of `agc_` where the histogram is
// reset every time an RMS error is successfully read.
frames_since_update_gain_ = 0;
// The compressor will always add at least kMinCompressionGain. In effect,
// this adjusts our target gain upward by the same amount and rms_error
// needs to reflect that.
rms_error += kMinCompressionGain;
// Handle as much error as possible with the compressor first.
int raw_compression =
rtc::SafeClamp(rms_error, kMinCompressionGain, max_compression_gain_);
// Deemphasize the compression gain error. Move halfway between the current
// target and the newly received target. This serves to soften perceptible
// intra-talkspurt adjustments, at the cost of some adaptation speed.
if ((raw_compression == max_compression_gain_ &&
target_compression_ == max_compression_gain_ - 1) ||
(raw_compression == kMinCompressionGain &&
target_compression_ == kMinCompressionGain + 1)) {
// Special case to allow the target to reach the endpoints of the
// compression range. The deemphasis would otherwise halt it at 1 dB shy.
target_compression_ = raw_compression;
} else {
target_compression_ =
(raw_compression - target_compression_) / 2 + target_compression_;
}
// Residual error will be handled by adjusting the volume slider. Use the
// raw rather than deemphasized compression here as we would otherwise
// shrink the amount of slack the compressor provides.
const int residual_gain =
rtc::SafeClamp(rms_error - raw_compression, -kMaxResidualGainChange,
kMaxResidualGainChange);
RTC_DLOG(LS_INFO) << "[agc] rms_error=" << rms_error
<< ", target_compression=" << target_compression_
<< ", residual_gain=" << residual_gain;
if (residual_gain == 0)
return;
int old_level = level_;
SetLevel(LevelFromGainError(residual_gain, level_, min_mic_level_));
if (old_level != level_) {
// level_ was updated by SetLevel; log the new value.
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.AgcSetLevel", level_, 1,
kMaxMicLevel, 50);
// Reset the AGC since the level has changed.
agc_->Reset();
}
}
void RecommendedInputVolumeEstimator::UpdateCompressor() {
calls_since_last_gain_log_++;
if (calls_since_last_gain_log_ == 100) {
calls_since_last_gain_log_ = 0;
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainApplied",
compression_, 0, kMaxCompressionGain,
kMaxCompressionGain + 1);
}
if (compression_ == target_compression_) {
return;
}
// Adapt the compression gain slowly towards the target, in order to avoid
// highly perceptible changes.
if (target_compression_ > compression_) {
compression_accumulator_ += kCompressionGainStep;
} else {
compression_accumulator_ -= kCompressionGainStep;
}
// The compressor accepts integer gains in dB. Adjust the gain when
// we've come within half a stepsize of the nearest integer. (We don't
// check for equality due to potential floating point imprecision).
int new_compression = compression_;
int nearest_neighbor = std::floor(compression_accumulator_ + 0.5);
if (std::fabs(compression_accumulator_ - nearest_neighbor) <
kCompressionGainStep / 2) {
new_compression = nearest_neighbor;
}
// Set the new compression gain.
if (new_compression != compression_) {
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainUpdated",
new_compression, 0, kMaxCompressionGain,
kMaxCompressionGain + 1);
compression_ = new_compression;
compression_accumulator_ = new_compression;
new_compression_to_set_ = compression_;
}
}
std::atomic<int> InputVolumeController::instance_counter_(0);
InputVolumeController::InputVolumeController(
const AudioProcessing::Config::GainController1::AnalogGainController&
analog_config,
Agc* agc)
: InputVolumeController(/*num_capture_channels=*/1, analog_config) {
RTC_DCHECK(channel_agcs_[0]);
RTC_DCHECK(agc);
channel_agcs_[0]->set_agc(agc);
}
InputVolumeController::InputVolumeController(
int num_capture_channels,
const AnalogAgcConfig& analog_config)
: analog_controller_enabled_(analog_config.enabled),
min_mic_level_override_(GetMinMicLevelOverride()),
data_dumper_(new ApmDataDumper(instance_counter_.fetch_add(1) + 1)),
use_min_channel_level_(!UseMaxAnalogChannelLevel()),
num_capture_channels_(num_capture_channels),
disable_digital_adaptive_(!analog_config.enable_digital_adaptive),
frames_since_clipped_(analog_config.clipped_wait_frames),
capture_output_used_(true),
clipped_level_step_(analog_config.clipped_level_step),
clipped_ratio_threshold_(analog_config.clipped_ratio_threshold),
clipped_wait_frames_(analog_config.clipped_wait_frames),
channel_agcs_(num_capture_channels),
new_compressions_to_set_(num_capture_channels),
clipping_predictor_(
CreateClippingPredictor(num_capture_channels,
analog_config.clipping_predictor)),
use_clipping_predictor_step_(
!!clipping_predictor_ &&
analog_config.clipping_predictor.use_predicted_step),
clipping_rate_log_(0.0f),
clipping_rate_log_counter_(0) {
RTC_LOG(LS_INFO) << "[agc] analog controller enabled: "
<< (analog_controller_enabled_ ? "yes" : "no");
const int min_mic_level = min_mic_level_override_.value_or(kMinMicLevel);
RTC_LOG(LS_INFO) << "[agc] Min mic level: " << min_mic_level
<< " (overridden: "
<< (min_mic_level_override_.has_value() ? "yes" : "no")
<< ")";
RTC_LOG(LS_INFO) << "[agc] Startup min volume: "
<< analog_config.startup_min_volume;
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
ApmDataDumper* data_dumper_ch = ch == 0 ? data_dumper_.get() : nullptr;
channel_agcs_[ch] = std::make_unique<RecommendedInputVolumeEstimator>(
data_dumper_ch, analog_config.startup_min_volume,
analog_config.clipped_level_min, disable_digital_adaptive_,
min_mic_level);
}
RTC_DCHECK(!channel_agcs_.empty());
RTC_DCHECK_GT(clipped_level_step_, 0);
RTC_DCHECK_LE(clipped_level_step_, 255);
RTC_DCHECK_GT(clipped_ratio_threshold_, 0.0f);
RTC_DCHECK_LT(clipped_ratio_threshold_, 1.0f);
RTC_DCHECK_GT(clipped_wait_frames_, 0);
channel_agcs_[0]->ActivateLogging();
}
InputVolumeController::~InputVolumeController() {}
void InputVolumeController::Initialize() {
RTC_DLOG(LS_INFO) << "InputVolumeController::Initialize";
data_dumper_->InitiateNewSetOfRecordings();
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
channel_agcs_[ch]->Initialize();
}
capture_output_used_ = true;
AggregateChannelLevels();
clipping_rate_log_ = 0.0f;
clipping_rate_log_counter_ = 0;
}
void InputVolumeController::SetupDigitalGainControl(
GainControl& gain_control) const {
if (gain_control.set_mode(GainControl::kFixedDigital) != 0) {
RTC_LOG(LS_ERROR) << "set_mode(GainControl::kFixedDigital) failed.";
}
const int target_level_dbfs = disable_digital_adaptive_ ? 0 : 2;
if (gain_control.set_target_level_dbfs(target_level_dbfs) != 0) {
RTC_LOG(LS_ERROR) << "set_target_level_dbfs() failed.";
}
const int compression_gain_db =
disable_digital_adaptive_ ? 0 : kDefaultCompressionGain;
if (gain_control.set_compression_gain_db(compression_gain_db) != 0) {
RTC_LOG(LS_ERROR) << "set_compression_gain_db() failed.";
}
const bool enable_limiter = !disable_digital_adaptive_;
if (gain_control.enable_limiter(enable_limiter) != 0) {
RTC_LOG(LS_ERROR) << "enable_limiter() failed.";
}
}
void InputVolumeController::AnalyzePreProcess(const AudioBuffer& audio_buffer) {
const float* const* audio = audio_buffer.channels_const();
size_t samples_per_channel = audio_buffer.num_frames();
RTC_DCHECK(audio);
AggregateChannelLevels();
if (!capture_output_used_) {
return;
}
if (!!clipping_predictor_) {
AudioFrameView<const float> frame = AudioFrameView<const float>(
audio, num_capture_channels_, static_cast<int>(samples_per_channel));
clipping_predictor_->Analyze(frame);
}
// Check for clipped samples, as the AGC has difficulty detecting pitch
// under clipping distortion. We do this in the preprocessing phase in order
// to catch clipped echo as well.
//
// If we find a sufficiently clipped frame, drop the current microphone level
// and enforce a new maximum level, dropped the same amount from the current
// maximum. This harsh treatment is an effort to avoid repeated clipped echo
// events. As compensation for this restriction, the maximum compression
// gain is increased, through SetMaxLevel().
float clipped_ratio =
ComputeClippedRatio(audio, num_capture_channels_, samples_per_channel);
clipping_rate_log_ = std::max(clipped_ratio, clipping_rate_log_);
clipping_rate_log_counter_++;
constexpr int kNumFramesIn30Seconds = 3000;
if (clipping_rate_log_counter_ == kNumFramesIn30Seconds) {
LogClippingMetrics(std::round(100.0f * clipping_rate_log_));
clipping_rate_log_ = 0.0f;
clipping_rate_log_counter_ = 0;
}
if (frames_since_clipped_ < clipped_wait_frames_) {
++frames_since_clipped_;
return;
}
const bool clipping_detected = clipped_ratio > clipped_ratio_threshold_;
bool clipping_predicted = false;
int predicted_step = 0;
if (!!clipping_predictor_) {
for (int channel = 0; channel < num_capture_channels_; ++channel) {
const auto step = clipping_predictor_->EstimateClippedLevelStep(
channel, recommended_input_volume_, clipped_level_step_,
channel_agcs_[channel]->min_mic_level(), kMaxMicLevel);
if (step.has_value()) {
predicted_step = std::max(predicted_step, step.value());
clipping_predicted = true;
}
}
}
if (clipping_detected) {
RTC_DLOG(LS_INFO) << "[agc] Clipping detected. clipped_ratio="
<< clipped_ratio;
}
int step = clipped_level_step_;
if (clipping_predicted) {
predicted_step = std::max(predicted_step, clipped_level_step_);
RTC_DLOG(LS_INFO) << "[agc] Clipping predicted. step=" << predicted_step;
if (use_clipping_predictor_step_) {
step = predicted_step;
}
}
if (clipping_detected ||
(clipping_predicted && use_clipping_predictor_step_)) {
for (auto& state_ch : channel_agcs_) {
state_ch->HandleClipping(step);
}
frames_since_clipped_ = 0;
if (!!clipping_predictor_) {
clipping_predictor_->Reset();
}
}
AggregateChannelLevels();
}
void InputVolumeController::Process(const AudioBuffer& audio_buffer) {
Process(audio_buffer, /*speech_probability=*/absl::nullopt,
/*speech_level_dbfs=*/absl::nullopt);
}
void InputVolumeController::Process(const AudioBuffer& audio_buffer,
absl::optional<float> speech_probability,
absl::optional<float> speech_level_dbfs) {
AggregateChannelLevels();
if (!capture_output_used_) {
return;
}
const size_t num_frames_per_band = audio_buffer.num_frames_per_band();
absl::optional<int> rms_error_override = absl::nullopt;
if (speech_probability.has_value() && speech_level_dbfs.has_value()) {
rms_error_override =
GetSpeechLevelErrorDb(*speech_level_dbfs, *speech_probability);
}
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
std::array<int16_t, AudioBuffer::kMaxSampleRate / 100> audio_data;
int16_t* audio_use = audio_data.data();
FloatS16ToS16(audio_buffer.split_bands_const_f(ch)[0], num_frames_per_band,
audio_use);
channel_agcs_[ch]->Process({audio_use, num_frames_per_band},
rms_error_override);
new_compressions_to_set_[ch] = channel_agcs_[ch]->new_compression();
}
AggregateChannelLevels();
}
absl::optional<int> InputVolumeController::GetDigitalComressionGain() {
return new_compressions_to_set_[channel_controlling_gain_];
}
void InputVolumeController::HandleCaptureOutputUsedChange(
bool capture_output_used) {
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
channel_agcs_[ch]->HandleCaptureOutputUsedChange(capture_output_used);
}
capture_output_used_ = capture_output_used;
}
float InputVolumeController::voice_probability() const {
float max_prob = 0.f;
for (const auto& state_ch : channel_agcs_) {
max_prob = std::max(max_prob, state_ch->voice_probability());
}
return max_prob;
}
void InputVolumeController::set_stream_analog_level(int level) {
if (!analog_controller_enabled_) {
recommended_input_volume_ = level;
}
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
channel_agcs_[ch]->set_stream_analog_level(level);
}
AggregateChannelLevels();
}
void InputVolumeController::AggregateChannelLevels() {
int new_recommended_input_volume =
channel_agcs_[0]->recommended_analog_level();
channel_controlling_gain_ = 0;
if (use_min_channel_level_) {
for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) {
int level = channel_agcs_[ch]->recommended_analog_level();
if (level < new_recommended_input_volume) {
new_recommended_input_volume = level;
channel_controlling_gain_ = static_cast<int>(ch);
}
}
} else {
for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) {
int level = channel_agcs_[ch]->recommended_analog_level();
if (level > new_recommended_input_volume) {
new_recommended_input_volume = level;
channel_controlling_gain_ = static_cast<int>(ch);
}
}
}
if (min_mic_level_override_.has_value() && new_recommended_input_volume > 0) {
new_recommended_input_volume =
std::max(new_recommended_input_volume, *min_mic_level_override_);
}
if (analog_controller_enabled_) {
recommended_input_volume_ = new_recommended_input_volume;
}
}
} // namespace webrtc