2014-05-13 18:00:26 +00:00
|
|
|
/*
|
|
|
|
|
* Copyright 2012 The WebRTC Project Authors. All rights reserved.
|
|
|
|
|
*
|
|
|
|
|
* Use of this source code is governed by a BSD-style license
|
|
|
|
|
* that can be found in the LICENSE file in the root of the source
|
|
|
|
|
* tree. An additional intellectual property rights grant can be found
|
|
|
|
|
* in the file PATENTS. All contributing project authors may
|
|
|
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
|
|
|
*/
|
|
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// Borrowed from Chromium's src/base/memory/scoped_ptr.h.
|
|
|
|
|
|
|
|
|
|
// Scopers help you manage ownership of a pointer, helping you easily manage a
|
|
|
|
|
// pointer within a scope, and automatically destroying the pointer at the end
|
|
|
|
|
// of a scope. There are two main classes you will use, which correspond to the
|
|
|
|
|
// operators new/delete and new[]/delete[].
|
2014-05-13 18:00:26 +00:00
|
|
|
//
|
|
|
|
|
// Example usage (scoped_ptr<T>):
|
|
|
|
|
// {
|
|
|
|
|
// scoped_ptr<Foo> foo(new Foo("wee"));
|
|
|
|
|
// } // foo goes out of scope, releasing the pointer with it.
|
|
|
|
|
//
|
|
|
|
|
// {
|
|
|
|
|
// scoped_ptr<Foo> foo; // No pointer managed.
|
|
|
|
|
// foo.reset(new Foo("wee")); // Now a pointer is managed.
|
|
|
|
|
// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
|
|
|
|
|
// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
|
|
|
|
|
// foo->Method(); // Foo::Method() called.
|
|
|
|
|
// foo.get()->Method(); // Foo::Method() called.
|
|
|
|
|
// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
|
|
|
|
|
// // manages a pointer.
|
|
|
|
|
// foo.reset(new Foo("wee4")); // foo manages a pointer again.
|
|
|
|
|
// foo.reset(); // Foo("wee4") destroyed, foo no longer
|
|
|
|
|
// // manages a pointer.
|
|
|
|
|
// } // foo wasn't managing a pointer, so nothing was destroyed.
|
|
|
|
|
//
|
|
|
|
|
// Example usage (scoped_ptr<T[]>):
|
|
|
|
|
// {
|
|
|
|
|
// scoped_ptr<Foo[]> foo(new Foo[100]);
|
|
|
|
|
// foo.get()->Method(); // Foo::Method on the 0th element.
|
|
|
|
|
// foo[10].Method(); // Foo::Method on the 10th element.
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// These scopers also implement part of the functionality of C++11 unique_ptr
|
2015-12-17 03:04:15 -08:00
|
|
|
// in that they are "movable but not copyable." You can use the scopers in the
|
|
|
|
|
// parameter and return types of functions to signify ownership transfer in to
|
|
|
|
|
// and out of a function. When calling a function that has a scoper as the
|
|
|
|
|
// argument type, it must be called with the result of calling std::move on an
|
|
|
|
|
// analogous scoper, or another function that generates a temporary; passing by
|
|
|
|
|
// copy will NOT work. Here is an example using scoped_ptr:
|
2014-05-13 18:00:26 +00:00
|
|
|
//
|
|
|
|
|
// void TakesOwnership(scoped_ptr<Foo> arg) {
|
|
|
|
|
// // Do something with arg
|
|
|
|
|
// }
|
|
|
|
|
// scoped_ptr<Foo> CreateFoo() {
|
2015-12-17 03:04:15 -08:00
|
|
|
// // No need for calling std::move because we are constructing a temporary
|
2014-05-13 18:00:26 +00:00
|
|
|
// // for the return value.
|
|
|
|
|
// return scoped_ptr<Foo>(new Foo("new"));
|
|
|
|
|
// }
|
|
|
|
|
// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
|
2015-12-17 03:04:15 -08:00
|
|
|
// return std::move(arg);
|
2014-05-13 18:00:26 +00:00
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// {
|
|
|
|
|
// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
|
2015-12-17 03:04:15 -08:00
|
|
|
// TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay").
|
2014-05-13 18:00:26 +00:00
|
|
|
// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
|
|
|
|
|
// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
|
2015-12-17 03:04:15 -08:00
|
|
|
// PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr.
|
2014-05-13 18:00:26 +00:00
|
|
|
// }
|
|
|
|
|
//
|
2015-12-17 03:04:15 -08:00
|
|
|
// Notice that if you do not call std::move when returning from PassThru(), or
|
2014-05-13 18:00:26 +00:00
|
|
|
// when invoking TakesOwnership(), the code will not compile because scopers
|
|
|
|
|
// are not copyable; they only implement move semantics which require calling
|
2015-12-17 03:04:15 -08:00
|
|
|
// std::move to signify a destructive transfer of state. CreateFoo() is
|
|
|
|
|
// different though because we are constructing a temporary on the return line
|
|
|
|
|
// and thus can avoid needing to call std::move.
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
#ifndef WEBRTC_BASE_SCOPED_PTR_H__
|
|
|
|
|
#define WEBRTC_BASE_SCOPED_PTR_H__
|
|
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// This is an implementation designed to match the anticipated future TR2
|
|
|
|
|
// implementation of the scoped_ptr class.
|
2014-05-13 18:00:26 +00:00
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
#include <assert.h>
|
|
|
|
|
#include <stddef.h>
|
|
|
|
|
#include <stdlib.h>
|
2014-05-13 18:00:26 +00:00
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
#include <algorithm> // For std::swap().
|
2015-12-17 06:20:27 -08:00
|
|
|
#include <cstddef>
|
2015-01-26 13:03:32 +00:00
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
#include "webrtc/base/constructormagic.h"
|
2016-01-12 07:24:19 -08:00
|
|
|
#include "webrtc/base/deprecation.h"
|
2015-01-29 09:12:47 +00:00
|
|
|
#include "webrtc/base/template_util.h"
|
|
|
|
|
#include "webrtc/typedefs.h"
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
namespace rtc {
|
|
|
|
|
|
|
|
|
|
// Function object which deletes its parameter, which must be a pointer.
|
|
|
|
|
// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
|
|
|
|
|
// invokes 'delete'. The default deleter for scoped_ptr<T>.
|
|
|
|
|
template <class T>
|
|
|
|
|
struct DefaultDeleter {
|
|
|
|
|
DefaultDeleter() {}
|
|
|
|
|
template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
|
|
|
|
|
// IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
|
|
|
|
|
// if U* is implicitly convertible to T* and U is not an array type.
|
|
|
|
|
//
|
|
|
|
|
// Correct implementation should use SFINAE to disable this
|
|
|
|
|
// constructor. However, since there are no other 1-argument constructors,
|
2015-01-14 10:51:54 +00:00
|
|
|
// using a static_assert based on is_convertible<> and requiring
|
2014-05-13 18:00:26 +00:00
|
|
|
// complete types is simpler and will cause compile failures for equivalent
|
|
|
|
|
// misuses.
|
|
|
|
|
//
|
|
|
|
|
// Note, the is_convertible<U*, T*> check also ensures that U is not an
|
|
|
|
|
// array. T is guaranteed to be a non-array, so any U* where U is an array
|
|
|
|
|
// cannot convert to T*.
|
|
|
|
|
enum { T_must_be_complete = sizeof(T) };
|
|
|
|
|
enum { U_must_be_complete = sizeof(U) };
|
2015-01-14 10:51:54 +00:00
|
|
|
static_assert(rtc::is_convertible<U*, T*>::value,
|
|
|
|
|
"U* must implicitly convert to T*");
|
2014-05-13 18:00:26 +00:00
|
|
|
}
|
|
|
|
|
inline void operator()(T* ptr) const {
|
|
|
|
|
enum { type_must_be_complete = sizeof(T) };
|
|
|
|
|
delete ptr;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Specialization of DefaultDeleter for array types.
|
|
|
|
|
template <class T>
|
|
|
|
|
struct DefaultDeleter<T[]> {
|
|
|
|
|
inline void operator()(T* ptr) const {
|
|
|
|
|
enum { type_must_be_complete = sizeof(T) };
|
|
|
|
|
delete[] ptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
// Disable this operator for any U != T because it is undefined to execute
|
|
|
|
|
// an array delete when the static type of the array mismatches the dynamic
|
|
|
|
|
// type.
|
|
|
|
|
//
|
|
|
|
|
// References:
|
|
|
|
|
// C++98 [expr.delete]p3
|
|
|
|
|
// http://cplusplus.github.com/LWG/lwg-defects.html#938
|
|
|
|
|
template <typename U> void operator()(U* array) const;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <class T, int n>
|
|
|
|
|
struct DefaultDeleter<T[n]> {
|
|
|
|
|
// Never allow someone to declare something like scoped_ptr<int[10]>.
|
2015-01-14 10:51:54 +00:00
|
|
|
static_assert(sizeof(T) == -1, "do not use array with size as type");
|
2014-05-13 18:00:26 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Function object which invokes 'free' on its parameter, which must be
|
|
|
|
|
// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
|
|
|
|
|
//
|
|
|
|
|
// scoped_ptr<int, rtc::FreeDeleter> foo_ptr(
|
|
|
|
|
// static_cast<int*>(malloc(sizeof(int))));
|
|
|
|
|
struct FreeDeleter {
|
|
|
|
|
inline void operator()(void* ptr) const {
|
|
|
|
|
free(ptr);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
namespace internal {
|
|
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
template <typename T>
|
|
|
|
|
struct ShouldAbortOnSelfReset {
|
|
|
|
|
template <typename U>
|
|
|
|
|
static rtc::internal::NoType Test(const typename U::AllowSelfReset*);
|
|
|
|
|
|
|
|
|
|
template <typename U>
|
|
|
|
|
static rtc::internal::YesType Test(...);
|
|
|
|
|
|
|
|
|
|
static const bool value =
|
|
|
|
|
sizeof(Test<T>(0)) == sizeof(rtc::internal::YesType);
|
|
|
|
|
};
|
|
|
|
|
|
2014-05-13 18:00:26 +00:00
|
|
|
// Minimal implementation of the core logic of scoped_ptr, suitable for
|
|
|
|
|
// reuse in both scoped_ptr and its specializations.
|
|
|
|
|
template <class T, class D>
|
|
|
|
|
class scoped_ptr_impl {
|
|
|
|
|
public:
|
2015-01-29 09:12:47 +00:00
|
|
|
explicit scoped_ptr_impl(T* p) : data_(p) {}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Initializer for deleters that have data parameters.
|
|
|
|
|
scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
|
|
|
|
|
|
|
|
|
|
// Templated constructor that destructively takes the value from another
|
|
|
|
|
// scoped_ptr_impl.
|
|
|
|
|
template <typename U, typename V>
|
|
|
|
|
scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
|
|
|
|
|
: data_(other->release(), other->get_deleter()) {
|
|
|
|
|
// We do not support move-only deleters. We could modify our move
|
2015-01-29 09:12:47 +00:00
|
|
|
// emulation to have rtc::subtle::move() and rtc::subtle::forward()
|
2014-05-13 18:00:26 +00:00
|
|
|
// functions that are imperfect emulations of their C++11 equivalents,
|
|
|
|
|
// but until there's a requirement, just assume deleters are copyable.
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename U, typename V>
|
|
|
|
|
void TakeState(scoped_ptr_impl<U, V>* other) {
|
|
|
|
|
// See comment in templated constructor above regarding lack of support
|
|
|
|
|
// for move-only deleters.
|
|
|
|
|
reset(other->release());
|
|
|
|
|
get_deleter() = other->get_deleter();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
~scoped_ptr_impl() {
|
2015-01-29 09:12:47 +00:00
|
|
|
if (data_.ptr != nullptr) {
|
2014-05-13 18:00:26 +00:00
|
|
|
// Not using get_deleter() saves one function call in non-optimized
|
|
|
|
|
// builds.
|
|
|
|
|
static_cast<D&>(data_)(data_.ptr);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void reset(T* p) {
|
2015-01-29 09:12:47 +00:00
|
|
|
// This is a self-reset, which is no longer allowed for default deleters:
|
|
|
|
|
// https://crbug.com/162971
|
|
|
|
|
assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr);
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Note that running data_.ptr = p can lead to undefined behavior if
|
2015-01-29 09:12:47 +00:00
|
|
|
// get_deleter()(get()) deletes this. In order to prevent this, reset()
|
2014-05-13 18:00:26 +00:00
|
|
|
// should update the stored pointer before deleting its old value.
|
|
|
|
|
//
|
|
|
|
|
// However, changing reset() to use that behavior may cause current code to
|
|
|
|
|
// break in unexpected ways. If the destruction of the owned object
|
|
|
|
|
// dereferences the scoped_ptr when it is destroyed by a call to reset(),
|
|
|
|
|
// then it will incorrectly dispatch calls to |p| rather than the original
|
|
|
|
|
// value of |data_.ptr|.
|
|
|
|
|
//
|
2015-01-29 09:12:47 +00:00
|
|
|
// During the transition period, set the stored pointer to nullptr while
|
2014-05-13 18:00:26 +00:00
|
|
|
// deleting the object. Eventually, this safety check will be removed to
|
2015-01-29 09:12:47 +00:00
|
|
|
// prevent the scenario initially described from occurring and
|
2014-05-13 18:00:26 +00:00
|
|
|
// http://crbug.com/176091 can be closed.
|
|
|
|
|
T* old = data_.ptr;
|
2015-01-29 09:12:47 +00:00
|
|
|
data_.ptr = nullptr;
|
|
|
|
|
if (old != nullptr)
|
2014-05-13 18:00:26 +00:00
|
|
|
static_cast<D&>(data_)(old);
|
|
|
|
|
data_.ptr = p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
T* get() const { return data_.ptr; }
|
|
|
|
|
|
|
|
|
|
D& get_deleter() { return data_; }
|
|
|
|
|
const D& get_deleter() const { return data_; }
|
|
|
|
|
|
|
|
|
|
void swap(scoped_ptr_impl& p2) {
|
|
|
|
|
// Standard swap idiom: 'using std::swap' ensures that std::swap is
|
|
|
|
|
// present in the overload set, but we call swap unqualified so that
|
|
|
|
|
// any more-specific overloads can be used, if available.
|
|
|
|
|
using std::swap;
|
|
|
|
|
swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
|
|
|
|
|
swap(data_.ptr, p2.data_.ptr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
T* release() {
|
|
|
|
|
T* old_ptr = data_.ptr;
|
2015-01-29 09:12:47 +00:00
|
|
|
data_.ptr = nullptr;
|
2014-05-13 18:00:26 +00:00
|
|
|
return old_ptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
T** accept() {
|
2015-01-29 09:12:47 +00:00
|
|
|
reset(nullptr);
|
2014-05-13 18:00:26 +00:00
|
|
|
return &(data_.ptr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
T** use() {
|
|
|
|
|
return &(data_.ptr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
// Needed to allow type-converting constructor.
|
|
|
|
|
template <typename U, typename V> friend class scoped_ptr_impl;
|
|
|
|
|
|
|
|
|
|
// Use the empty base class optimization to allow us to have a D
|
|
|
|
|
// member, while avoiding any space overhead for it when D is an
|
|
|
|
|
// empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
|
|
|
|
// discussion of this technique.
|
|
|
|
|
struct Data : public D {
|
|
|
|
|
explicit Data(T* ptr_in) : ptr(ptr_in) {}
|
|
|
|
|
Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
|
|
|
|
|
T* ptr;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
Data data_;
|
|
|
|
|
|
2015-09-16 05:37:44 -07:00
|
|
|
RTC_DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
|
2014-05-13 18:00:26 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace internal
|
|
|
|
|
|
|
|
|
|
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
|
|
|
|
|
// automatically deletes the pointer it holds (if any).
|
|
|
|
|
// That is, scoped_ptr<T> owns the T object that it points to.
|
2015-01-29 09:12:47 +00:00
|
|
|
// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
|
|
|
|
|
// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
|
2014-05-13 18:00:26 +00:00
|
|
|
// dereference it, you get the thread safety guarantees of T.
|
|
|
|
|
//
|
|
|
|
|
// The size of scoped_ptr is small. On most compilers, when using the
|
|
|
|
|
// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
|
|
|
|
|
// increase the size proportional to whatever state they need to have. See
|
|
|
|
|
// comments inside scoped_ptr_impl<> for details.
|
|
|
|
|
//
|
|
|
|
|
// Current implementation targets having a strict subset of C++11's
|
|
|
|
|
// unique_ptr<> features. Known deficiencies include not supporting move-only
|
2015-01-29 09:12:47 +00:00
|
|
|
// deleters, function pointers as deleters, and deleters with reference
|
2014-05-13 18:00:26 +00:00
|
|
|
// types.
|
|
|
|
|
template <class T, class D = rtc::DefaultDeleter<T> >
|
|
|
|
|
class scoped_ptr {
|
2015-01-29 09:12:47 +00:00
|
|
|
|
|
|
|
|
// TODO(ajm): If we ever import RefCountedBase, this check needs to be
|
|
|
|
|
// enabled.
|
|
|
|
|
//static_assert(rtc::internal::IsNotRefCounted<T>::value,
|
|
|
|
|
// "T is refcounted type and needs scoped refptr");
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
// The element and deleter types.
|
|
|
|
|
typedef T element_type;
|
|
|
|
|
typedef D deleter_type;
|
|
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// Constructor. Defaults to initializing with nullptr.
|
|
|
|
|
scoped_ptr() : impl_(nullptr) {}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Constructor. Takes ownership of p.
|
2015-01-29 09:12:47 +00:00
|
|
|
explicit scoped_ptr(element_type* p) : impl_(p) {}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Constructor. Allows initialization of a stateful deleter.
|
2015-01-29 09:12:47 +00:00
|
|
|
scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
|
|
|
|
|
|
|
|
|
|
// Constructor. Allows construction from a nullptr.
|
2015-12-17 06:20:27 -08:00
|
|
|
scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Constructor. Allows construction from a scoped_ptr rvalue for a
|
|
|
|
|
// convertible type and deleter.
|
|
|
|
|
//
|
|
|
|
|
// IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
|
|
|
|
|
// from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
|
|
|
|
|
// has different post-conditions if D is a reference type. Since this
|
|
|
|
|
// implementation does not support deleters with reference type,
|
|
|
|
|
// we do not need a separate move constructor allowing us to avoid one
|
|
|
|
|
// use of SFINAE. You only need to care about this if you modify the
|
|
|
|
|
// implementation of scoped_ptr.
|
|
|
|
|
template <typename U, typename V>
|
2015-01-29 09:12:47 +00:00
|
|
|
scoped_ptr(scoped_ptr<U, V>&& other)
|
|
|
|
|
: impl_(&other.impl_) {
|
2015-01-14 10:51:54 +00:00
|
|
|
static_assert(!rtc::is_array<U>::value, "U cannot be an array");
|
2014-05-13 18:00:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// operator=. Allows assignment from a scoped_ptr rvalue for a convertible
|
|
|
|
|
// type and deleter.
|
|
|
|
|
//
|
|
|
|
|
// IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
|
|
|
|
|
// the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
|
|
|
|
|
// form has different requirements on for move-only Deleters. Since this
|
|
|
|
|
// implementation does not support move-only Deleters, we do not need a
|
|
|
|
|
// separate move assignment operator allowing us to avoid one use of SFINAE.
|
|
|
|
|
// You only need to care about this if you modify the implementation of
|
|
|
|
|
// scoped_ptr.
|
|
|
|
|
template <typename U, typename V>
|
2015-01-29 09:12:47 +00:00
|
|
|
scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) {
|
2015-01-14 10:51:54 +00:00
|
|
|
static_assert(!rtc::is_array<U>::value, "U cannot be an array");
|
2014-05-13 18:00:26 +00:00
|
|
|
impl_.TakeState(&rhs.impl_);
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// operator=. Allows assignment from a nullptr. Deletes the currently owned
|
|
|
|
|
// object, if any.
|
2015-12-17 06:20:27 -08:00
|
|
|
scoped_ptr& operator=(std::nullptr_t) {
|
2015-01-29 09:12:47 +00:00
|
|
|
reset();
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-22 19:44:19 +02:00
|
|
|
// Deleted copy constructor and copy assignment, to make the type move-only.
|
|
|
|
|
scoped_ptr(const scoped_ptr& other) = delete;
|
|
|
|
|
scoped_ptr& operator=(const scoped_ptr& other) = delete;
|
|
|
|
|
|
|
|
|
|
// Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
|
2016-01-12 07:24:19 -08:00
|
|
|
// Deprecated; remove in March 2016 (bug 5373).
|
|
|
|
|
RTC_DEPRECATED scoped_ptr&& Pass() {
|
|
|
|
|
return std::move(*this);
|
|
|
|
|
}
|
2015-04-22 19:44:19 +02:00
|
|
|
|
2014-05-13 18:00:26 +00:00
|
|
|
// Reset. Deletes the currently owned object, if any.
|
|
|
|
|
// Then takes ownership of a new object, if given.
|
2015-01-29 09:12:47 +00:00
|
|
|
void reset(element_type* p = nullptr) { impl_.reset(p); }
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Accessors to get the owned object.
|
|
|
|
|
// operator* and operator-> will assert() if there is no current object.
|
|
|
|
|
element_type& operator*() const {
|
2015-01-29 09:12:47 +00:00
|
|
|
assert(impl_.get() != nullptr);
|
2014-05-13 18:00:26 +00:00
|
|
|
return *impl_.get();
|
|
|
|
|
}
|
|
|
|
|
element_type* operator->() const {
|
2015-01-29 09:12:47 +00:00
|
|
|
assert(impl_.get() != nullptr);
|
2014-05-13 18:00:26 +00:00
|
|
|
return impl_.get();
|
|
|
|
|
}
|
|
|
|
|
element_type* get() const { return impl_.get(); }
|
|
|
|
|
|
|
|
|
|
// Access to the deleter.
|
|
|
|
|
deleter_type& get_deleter() { return impl_.get_deleter(); }
|
|
|
|
|
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
|
|
|
|
|
|
|
|
|
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
|
|
|
|
// implicitly convertible to a real bool (which is dangerous).
|
|
|
|
|
//
|
|
|
|
|
// Note that this trick is only safe when the == and != operators
|
|
|
|
|
// are declared explicitly, as otherwise "scoped_ptr1 ==
|
|
|
|
|
// scoped_ptr2" will compile but do the wrong thing (i.e., convert
|
|
|
|
|
// to Testable and then do the comparison).
|
|
|
|
|
private:
|
|
|
|
|
typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
|
|
|
|
|
scoped_ptr::*Testable;
|
|
|
|
|
|
|
|
|
|
public:
|
2015-01-29 09:12:47 +00:00
|
|
|
operator Testable() const {
|
|
|
|
|
return impl_.get() ? &scoped_ptr::impl_ : nullptr;
|
|
|
|
|
}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Comparison operators.
|
|
|
|
|
// These return whether two scoped_ptr refer to the same object, not just to
|
|
|
|
|
// two different but equal objects.
|
|
|
|
|
bool operator==(const element_type* p) const { return impl_.get() == p; }
|
|
|
|
|
bool operator!=(const element_type* p) const { return impl_.get() != p; }
|
|
|
|
|
|
|
|
|
|
// Swap two scoped pointers.
|
|
|
|
|
void swap(scoped_ptr& p2) {
|
|
|
|
|
impl_.swap(p2.impl_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Release a pointer.
|
2015-01-29 09:12:47 +00:00
|
|
|
// The return value is the current pointer held by this object. If this object
|
|
|
|
|
// holds a nullptr, the return value is nullptr. After this operation, this
|
|
|
|
|
// object will hold a nullptr, and will not own the object any more.
|
2014-05-13 18:00:26 +00:00
|
|
|
element_type* release() WARN_UNUSED_RESULT {
|
|
|
|
|
return impl_.release();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Delete the currently held pointer and return a pointer
|
|
|
|
|
// to allow overwriting of the current pointer address.
|
|
|
|
|
element_type** accept() WARN_UNUSED_RESULT {
|
|
|
|
|
return impl_.accept();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Return a pointer to the current pointer address.
|
|
|
|
|
element_type** use() WARN_UNUSED_RESULT {
|
|
|
|
|
return impl_.use();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
// Needed to reach into |impl_| in the constructor.
|
|
|
|
|
template <typename U, typename V> friend class scoped_ptr;
|
|
|
|
|
rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
|
|
|
|
|
|
|
|
|
// Forbidden for API compatibility with std::unique_ptr.
|
|
|
|
|
explicit scoped_ptr(int disallow_construction_from_null);
|
|
|
|
|
|
|
|
|
|
// Forbid comparison of scoped_ptr types. If U != T, it totally
|
|
|
|
|
// doesn't make sense, and if U == T, it still doesn't make sense
|
|
|
|
|
// because you should never have the same object owned by two different
|
|
|
|
|
// scoped_ptrs.
|
|
|
|
|
template <class U> bool operator==(scoped_ptr<U> const& p2) const;
|
|
|
|
|
template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <class T, class D>
|
|
|
|
|
class scoped_ptr<T[], D> {
|
|
|
|
|
public:
|
|
|
|
|
// The element and deleter types.
|
|
|
|
|
typedef T element_type;
|
|
|
|
|
typedef D deleter_type;
|
|
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// Constructor. Defaults to initializing with nullptr.
|
|
|
|
|
scoped_ptr() : impl_(nullptr) {}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Constructor. Stores the given array. Note that the argument's type
|
|
|
|
|
// must exactly match T*. In particular:
|
|
|
|
|
// - it cannot be a pointer to a type derived from T, because it is
|
|
|
|
|
// inherently unsafe in the general case to access an array through a
|
|
|
|
|
// pointer whose dynamic type does not match its static type (eg., if
|
|
|
|
|
// T and the derived types had different sizes access would be
|
|
|
|
|
// incorrectly calculated). Deletion is also always undefined
|
|
|
|
|
// (C++98 [expr.delete]p3). If you're doing this, fix your code.
|
|
|
|
|
// - it cannot be const-qualified differently from T per unique_ptr spec
|
|
|
|
|
// (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
|
|
|
|
|
// to work around this may use implicit_cast<const T*>().
|
|
|
|
|
// However, because of the first bullet in this comment, users MUST
|
|
|
|
|
// NOT use implicit_cast<Base*>() to upcast the static type of the array.
|
2015-01-29 09:12:47 +00:00
|
|
|
explicit scoped_ptr(element_type* array) : impl_(array) {}
|
|
|
|
|
|
|
|
|
|
// Constructor. Allows construction from a nullptr.
|
2015-12-17 06:20:27 -08:00
|
|
|
scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
|
2015-01-29 09:12:47 +00:00
|
|
|
|
|
|
|
|
// Constructor. Allows construction from a scoped_ptr rvalue.
|
|
|
|
|
scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// operator=. Allows assignment from a scoped_ptr rvalue.
|
|
|
|
|
scoped_ptr& operator=(scoped_ptr&& rhs) {
|
|
|
|
|
impl_.TakeState(&rhs.impl_);
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// operator=. Allows assignment from a nullptr. Deletes the currently owned
|
|
|
|
|
// array, if any.
|
2015-12-17 06:20:27 -08:00
|
|
|
scoped_ptr& operator=(std::nullptr_t) {
|
2015-01-29 09:12:47 +00:00
|
|
|
reset();
|
2014-05-13 18:00:26 +00:00
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-22 19:44:19 +02:00
|
|
|
// Deleted copy constructor and copy assignment, to make the type move-only.
|
|
|
|
|
scoped_ptr(const scoped_ptr& other) = delete;
|
|
|
|
|
scoped_ptr& operator=(const scoped_ptr& other) = delete;
|
|
|
|
|
|
|
|
|
|
// Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
|
2016-01-12 07:24:19 -08:00
|
|
|
// Deprecated; remove in March 2016 (bug 5373).
|
|
|
|
|
RTC_DEPRECATED scoped_ptr&& Pass() {
|
|
|
|
|
return std::move(*this);
|
|
|
|
|
}
|
2015-04-22 19:44:19 +02:00
|
|
|
|
2014-05-13 18:00:26 +00:00
|
|
|
// Reset. Deletes the currently owned array, if any.
|
|
|
|
|
// Then takes ownership of a new object, if given.
|
2015-01-29 09:12:47 +00:00
|
|
|
void reset(element_type* array = nullptr) { impl_.reset(array); }
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Accessors to get the owned array.
|
|
|
|
|
element_type& operator[](size_t i) const {
|
2015-01-29 09:12:47 +00:00
|
|
|
assert(impl_.get() != nullptr);
|
2014-05-13 18:00:26 +00:00
|
|
|
return impl_.get()[i];
|
|
|
|
|
}
|
|
|
|
|
element_type* get() const { return impl_.get(); }
|
|
|
|
|
|
|
|
|
|
// Access to the deleter.
|
|
|
|
|
deleter_type& get_deleter() { return impl_.get_deleter(); }
|
|
|
|
|
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
|
|
|
|
|
|
|
|
|
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
|
|
|
|
// implicitly convertible to a real bool (which is dangerous).
|
|
|
|
|
private:
|
|
|
|
|
typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
|
|
|
|
|
scoped_ptr::*Testable;
|
|
|
|
|
|
|
|
|
|
public:
|
2015-01-29 09:12:47 +00:00
|
|
|
operator Testable() const {
|
|
|
|
|
return impl_.get() ? &scoped_ptr::impl_ : nullptr;
|
|
|
|
|
}
|
2014-05-13 18:00:26 +00:00
|
|
|
|
|
|
|
|
// Comparison operators.
|
|
|
|
|
// These return whether two scoped_ptr refer to the same object, not just to
|
|
|
|
|
// two different but equal objects.
|
|
|
|
|
bool operator==(element_type* array) const { return impl_.get() == array; }
|
|
|
|
|
bool operator!=(element_type* array) const { return impl_.get() != array; }
|
|
|
|
|
|
|
|
|
|
// Swap two scoped pointers.
|
|
|
|
|
void swap(scoped_ptr& p2) {
|
|
|
|
|
impl_.swap(p2.impl_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Release a pointer.
|
2015-01-29 09:12:47 +00:00
|
|
|
// The return value is the current pointer held by this object. If this object
|
|
|
|
|
// holds a nullptr, the return value is nullptr. After this operation, this
|
|
|
|
|
// object will hold a nullptr, and will not own the object any more.
|
2014-05-13 18:00:26 +00:00
|
|
|
element_type* release() WARN_UNUSED_RESULT {
|
|
|
|
|
return impl_.release();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Delete the currently held pointer and return a pointer
|
|
|
|
|
// to allow overwriting of the current pointer address.
|
|
|
|
|
element_type** accept() WARN_UNUSED_RESULT {
|
|
|
|
|
return impl_.accept();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Return a pointer to the current pointer address.
|
|
|
|
|
element_type** use() WARN_UNUSED_RESULT {
|
|
|
|
|
return impl_.use();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
// Force element_type to be a complete type.
|
|
|
|
|
enum { type_must_be_complete = sizeof(element_type) };
|
|
|
|
|
|
|
|
|
|
// Actually hold the data.
|
|
|
|
|
rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
|
|
|
|
|
|
|
|
|
// Disable initialization from any type other than element_type*, by
|
|
|
|
|
// providing a constructor that matches such an initialization, but is
|
|
|
|
|
// private and has no definition. This is disabled because it is not safe to
|
|
|
|
|
// call delete[] on an array whose static type does not match its dynamic
|
|
|
|
|
// type.
|
|
|
|
|
template <typename U> explicit scoped_ptr(U* array);
|
|
|
|
|
explicit scoped_ptr(int disallow_construction_from_null);
|
|
|
|
|
|
|
|
|
|
// Disable reset() from any type other than element_type*, for the same
|
|
|
|
|
// reasons as the constructor above.
|
|
|
|
|
template <typename U> void reset(U* array);
|
|
|
|
|
void reset(int disallow_reset_from_null);
|
|
|
|
|
|
|
|
|
|
// Forbid comparison of scoped_ptr types. If U != T, it totally
|
|
|
|
|
// doesn't make sense, and if U == T, it still doesn't make sense
|
|
|
|
|
// because you should never have the same object owned by two different
|
|
|
|
|
// scoped_ptrs.
|
|
|
|
|
template <class U> bool operator==(scoped_ptr<U> const& p2) const;
|
|
|
|
|
template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <class T, class D>
|
|
|
|
|
void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) {
|
|
|
|
|
p1.swap(p2);
|
|
|
|
|
}
|
|
|
|
|
|
rtc::Buffer improvements
1. Constructors, SetData(), and AppendData() now accept uint8_t*,
int8_t*, and char*. Previously, they accepted void*, meaning that
any kind of pointer was accepted. I think requiring an explicit
cast in cases where the input array isn't already of a byte-sized
type is a better compromise between convenience and safety.
2. data() can now return a uint8_t* instead of a char*, which seems
more appropriate for a byte array, and is harder to mix up with
zero-terminated C strings. data<int8_t>() is also available so
that callers that want that type instead won't have to cast, as
is data<char>() (which remains the default until all existing
callers have been fixed).
3. Constructors, SetData(), and AppendData() now accept arrays
natively, not just decayed to pointers. The advantage of this is
that callers don't have to pass the size separately.
4. There are new constructors that allow setting size and capacity
without initializing the array. Previously, this had to be done
separately after construction.
5. Instead of TransferTo(), Buffer now supports swap(), and move
construction and assignment, and has a Pass() method that works
just like std::move(). (The Pass method is modeled after
scoped_ptr::Pass().)
R=jmarusic@webrtc.org, tommi@webrtc.org
Review URL: https://webrtc-codereview.appspot.com/42989004
Cr-Commit-Position: refs/heads/master@{#9033}
2015-04-20 14:03:07 +02:00
|
|
|
} // namespace rtc
|
|
|
|
|
|
2014-05-13 18:00:26 +00:00
|
|
|
template <class T, class D>
|
|
|
|
|
bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) {
|
|
|
|
|
return p1 == p2.get();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T, class D>
|
|
|
|
|
bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) {
|
|
|
|
|
return p1 != p2.get();
|
|
|
|
|
}
|
|
|
|
|
|
2015-01-29 09:12:47 +00:00
|
|
|
// A function to convert T* into scoped_ptr<T>
|
|
|
|
|
// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
|
|
|
|
|
// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
|
|
|
|
|
template <typename T>
|
|
|
|
|
rtc::scoped_ptr<T> rtc_make_scoped_ptr(T* ptr) {
|
|
|
|
|
return rtc::scoped_ptr<T>(ptr);
|
|
|
|
|
}
|
|
|
|
|
|
2014-05-13 18:00:26 +00:00
|
|
|
#endif // #ifndef WEBRTC_BASE_SCOPED_PTR_H__
|