webrtc_m130/webrtc/p2p/client/basicportallocator.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1535 lines
53 KiB
C++
Raw Normal View History

/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/client/basicportallocator.h"
#include <algorithm>
#include <string>
#include <vector>
#include "webrtc/api/umametrics.h"
#include "webrtc/p2p/base/basicpacketsocketfactory.h"
#include "webrtc/p2p/base/common.h"
#include "webrtc/p2p/base/port.h"
#include "webrtc/p2p/base/relayport.h"
#include "webrtc/p2p/base/stunport.h"
#include "webrtc/p2p/base/tcpport.h"
#include "webrtc/p2p/base/turnport.h"
#include "webrtc/p2p/base/udpport.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/helpers.h"
#include "webrtc/base/logging.h"
using rtc::CreateRandomId;
namespace {
enum {
MSG_CONFIG_START,
MSG_CONFIG_READY,
MSG_ALLOCATE,
MSG_ALLOCATION_PHASE,
MSG_SEQUENCEOBJECTS_CREATED,
MSG_CONFIG_STOP,
};
const int PHASE_UDP = 0;
const int PHASE_RELAY = 1;
const int PHASE_TCP = 2;
const int PHASE_SSLTCP = 3;
const int kNumPhases = 4;
// Gets protocol priority: UDP > TCP > SSLTCP.
int GetProtocolPriority(cricket::ProtocolType protocol) {
switch (protocol) {
case cricket::PROTO_UDP:
return 2;
case cricket::PROTO_TCP:
return 1;
case cricket::PROTO_SSLTCP:
return 0;
default:
RTC_NOTREACHED();
return 0;
}
}
// Gets address family priority: IPv6 > IPv4 > Unspecified.
int GetAddressFamilyPriority(int ip_family) {
switch (ip_family) {
case AF_INET6:
return 2;
case AF_INET:
return 1;
default:
RTC_NOTREACHED();
return 0;
}
}
// Returns positive if a is better, negative if b is better, and 0 otherwise.
int ComparePort(const cricket::Port* a, const cricket::Port* b) {
int a_protocol = GetProtocolPriority(a->GetProtocol());
int b_protocol = GetProtocolPriority(b->GetProtocol());
int cmp_protocol = a_protocol - b_protocol;
if (cmp_protocol != 0) {
return cmp_protocol;
}
int a_family = GetAddressFamilyPriority(a->Network()->GetBestIP().family());
int b_family = GetAddressFamilyPriority(b->Network()->GetBestIP().family());
return a_family - b_family;
}
} // namespace
namespace cricket {
const uint32_t DISABLE_ALL_PHASES =
PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY;
// BasicPortAllocator
BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory)
: network_manager_(network_manager), socket_factory_(socket_factory) {
RTC_DCHECK(network_manager_ != nullptr);
RTC_DCHECK(socket_factory_ != nullptr);
Construct();
}
BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager)
: network_manager_(network_manager), socket_factory_(nullptr) {
RTC_DCHECK(network_manager_ != nullptr);
Construct();
}
BasicPortAllocator::BasicPortAllocator(rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory,
const ServerAddresses& stun_servers)
: network_manager_(network_manager), socket_factory_(socket_factory) {
RTC_DCHECK(socket_factory_ != NULL);
SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0, false);
Construct();
}
BasicPortAllocator::BasicPortAllocator(
rtc::NetworkManager* network_manager,
const ServerAddresses& stun_servers,
const rtc::SocketAddress& relay_address_udp,
const rtc::SocketAddress& relay_address_tcp,
const rtc::SocketAddress& relay_address_ssl)
: network_manager_(network_manager), socket_factory_(NULL) {
std::vector<RelayServerConfig> turn_servers;
RelayServerConfig config(RELAY_GTURN);
if (!relay_address_udp.IsNil()) {
config.ports.push_back(ProtocolAddress(relay_address_udp, PROTO_UDP));
}
if (!relay_address_tcp.IsNil()) {
config.ports.push_back(ProtocolAddress(relay_address_tcp, PROTO_TCP));
}
if (!relay_address_ssl.IsNil()) {
config.ports.push_back(ProtocolAddress(relay_address_ssl, PROTO_SSLTCP));
}
if (!config.ports.empty()) {
turn_servers.push_back(config);
}
SetConfiguration(stun_servers, turn_servers, 0, false);
Construct();
}
void BasicPortAllocator::Construct() {
allow_tcp_listen_ = true;
}
void BasicPortAllocator::OnIceRegathering(PortAllocatorSession* session,
IceRegatheringReason reason) {
if (!metrics_observer()) {
return;
}
// If the session has not been taken by an active channel, do not report the
// metric.
for (auto& allocator_session : pooled_sessions()) {
if (allocator_session.get() == session) {
return;
}
}
metrics_observer()->IncrementEnumCounter(
webrtc::kEnumCounterIceRegathering, static_cast<int>(reason),
static_cast<int>(IceRegatheringReason::MAX_VALUE));
}
BasicPortAllocator::~BasicPortAllocator() {
// Our created port allocator sessions depend on us, so destroy our remaining
// pooled sessions before anything else.
DiscardCandidatePool();
}
PortAllocatorSession* BasicPortAllocator::CreateSessionInternal(
const std::string& content_name, int component,
const std::string& ice_ufrag, const std::string& ice_pwd) {
PortAllocatorSession* session = new BasicPortAllocatorSession(
this, content_name, component, ice_ufrag, ice_pwd);
session->SignalIceRegathering.connect(this,
&BasicPortAllocator::OnIceRegathering);
return session;
}
void BasicPortAllocator::AddTurnServer(const RelayServerConfig& turn_server) {
std::vector<RelayServerConfig> new_turn_servers = turn_servers();
new_turn_servers.push_back(turn_server);
SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size(),
prune_turn_ports());
}
// BasicPortAllocatorSession
BasicPortAllocatorSession::BasicPortAllocatorSession(
BasicPortAllocator* allocator,
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd)
: PortAllocatorSession(content_name,
component,
ice_ufrag,
ice_pwd,
allocator->flags()),
allocator_(allocator),
network_thread_(NULL),
socket_factory_(allocator->socket_factory()),
allocation_started_(false),
network_manager_started_(false),
allocation_sequences_created_(false),
prune_turn_ports_(allocator->prune_turn_ports()) {
allocator_->network_manager()->SignalNetworksChanged.connect(
this, &BasicPortAllocatorSession::OnNetworksChanged);
allocator_->network_manager()->StartUpdating();
}
BasicPortAllocatorSession::~BasicPortAllocatorSession() {
allocator_->network_manager()->StopUpdating();
if (network_thread_ != NULL)
network_thread_->Clear(this);
for (uint32_t i = 0; i < sequences_.size(); ++i) {
// AllocationSequence should clear it's map entry for turn ports before
// ports are destroyed.
sequences_[i]->Clear();
}
std::vector<PortData>::iterator it;
for (it = ports_.begin(); it != ports_.end(); it++)
delete it->port();
for (uint32_t i = 0; i < configs_.size(); ++i)
delete configs_[i];
for (uint32_t i = 0; i < sequences_.size(); ++i)
delete sequences_[i];
}
void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) {
if (filter == candidate_filter_) {
return;
}
// We assume the filter will only change from "ALL" to something else.
RTC_DCHECK(candidate_filter_ == CF_ALL);
candidate_filter_ = filter;
for (PortData& port : ports_) {
if (!port.has_pairable_candidate()) {
continue;
}
const auto& candidates = port.port()->Candidates();
// Setting a filter may cause a ready port to become non-ready
// if it no longer has any pairable candidates.
if (!std::any_of(candidates.begin(), candidates.end(),
[this, &port](const Candidate& candidate) {
return CandidatePairable(candidate, port.port());
})) {
port.set_has_pairable_candidate(false);
}
}
}
void BasicPortAllocatorSession::StartGettingPorts() {
network_thread_ = rtc::Thread::Current();
state_ = SessionState::GATHERING;
if (!socket_factory_) {
owned_socket_factory_.reset(
new rtc::BasicPacketSocketFactory(network_thread_));
socket_factory_ = owned_socket_factory_.get();
}
network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_START);
LOG(LS_INFO) << "Start getting ports with prune_turn_ports "
<< (prune_turn_ports_ ? "enabled" : "disabled");
}
void BasicPortAllocatorSession::StopGettingPorts() {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
ClearGettingPorts();
// Note: this must be called after ClearGettingPorts because both may set the
// session state and we should set the state to STOPPED.
state_ = SessionState::STOPPED;
}
void BasicPortAllocatorSession::ClearGettingPorts() {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
network_thread_->Clear(this, MSG_ALLOCATE);
for (uint32_t i = 0; i < sequences_.size(); ++i) {
sequences_[i]->Stop();
}
network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_STOP);
state_ = SessionState::CLEARED;
}
std::vector<rtc::Network*> BasicPortAllocatorSession::GetFailedNetworks() {
std::vector<rtc::Network*> networks = GetNetworks();
// A network interface may have both IPv4 and IPv6 networks. Only if
// neither of the networks has any connections, the network interface
// is considered failed and need to be regathered on.
std::set<std::string> networks_with_connection;
for (const PortData& data : ports_) {
Port* port = data.port();
if (!port->connections().empty()) {
networks_with_connection.insert(port->Network()->name());
}
}
networks.erase(
std::remove_if(networks.begin(), networks.end(),
[networks_with_connection](rtc::Network* network) {
// If a network does not have any connection, it is
// considered failed.
return networks_with_connection.find(network->name()) !=
networks_with_connection.end();
}),
networks.end());
return networks;
}
void BasicPortAllocatorSession::RegatherOnFailedNetworks() {
// Find the list of networks that have no connection.
std::vector<rtc::Network*> failed_networks = GetFailedNetworks();
if (failed_networks.empty()) {
return;
}
LOG(LS_INFO) << "Regather candidates on failed networks";
// Mark a sequence as "network failed" if its network is in the list of failed
// networks, so that it won't be considered as equivalent when the session
// regathers ports and candidates.
for (AllocationSequence* sequence : sequences_) {
if (!sequence->network_failed() &&
std::find(failed_networks.begin(), failed_networks.end(),
sequence->network()) != failed_networks.end()) {
sequence->set_network_failed();
}
}
// Remove ports from being used locally and send signaling to remove
// the candidates on the remote side.
std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks);
if (!ports_to_prune.empty()) {
LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " ports because their networks failed";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
if (allocation_started_ && network_manager_started_ && !IsStopped()) {
SignalIceRegathering(this, IceRegatheringReason::NETWORK_FAILURE);
DoAllocate();
}
}
std::vector<PortInterface*> BasicPortAllocatorSession::ReadyPorts() const {
std::vector<PortInterface*> ret;
for (const PortData& data : ports_) {
if (data.ready()) {
ret.push_back(data.port());
}
}
return ret;
}
std::vector<Candidate> BasicPortAllocatorSession::ReadyCandidates() const {
std::vector<Candidate> candidates;
for (const PortData& data : ports_) {
if (!data.ready()) {
continue;
}
GetCandidatesFromPort(data, &candidates);
}
return candidates;
}
void BasicPortAllocatorSession::GetCandidatesFromPort(
const PortData& data,
std::vector<Candidate>* candidates) const {
RTC_CHECK(candidates != nullptr);
for (const Candidate& candidate : data.port()->Candidates()) {
if (!CheckCandidateFilter(candidate)) {
continue;
}
ProtocolType pvalue;
if (!StringToProto(candidate.protocol().c_str(), &pvalue) ||
!data.sequence()->ProtocolEnabled(pvalue)) {
continue;
}
candidates->push_back(SanitizeRelatedAddress(candidate));
}
}
Candidate BasicPortAllocatorSession::SanitizeRelatedAddress(
const Candidate& c) const {
Candidate copy = c;
// If adapter enumeration is disabled or host candidates are disabled,
// clear the raddr of STUN candidates to avoid local address leakage.
bool filter_stun_related_address =
((flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) &&
(flags() & PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE)) ||
!(candidate_filter_ & CF_HOST);
// If the candidate filter doesn't allow reflexive addresses, empty TURN raddr
// to avoid reflexive address leakage.
bool filter_turn_related_address = !(candidate_filter_ & CF_REFLEXIVE);
if ((c.type() == STUN_PORT_TYPE && filter_stun_related_address) ||
(c.type() == RELAY_PORT_TYPE && filter_turn_related_address)) {
copy.set_related_address(
rtc::EmptySocketAddressWithFamily(copy.address().family()));
}
return copy;
}
bool BasicPortAllocatorSession::CandidatesAllocationDone() const {
// Done only if all required AllocationSequence objects
// are created.
if (!allocation_sequences_created_) {
return false;
}
// Check that all port allocation sequences are complete (not running).
if (std::any_of(sequences_.begin(), sequences_.end(),
[](const AllocationSequence* sequence) {
return sequence->state() == AllocationSequence::kRunning;
})) {
return false;
}
// If all allocated ports are no longer gathering, session must have got all
// expected candidates. Session will trigger candidates allocation complete
// signal.
return std::none_of(ports_.begin(), ports_.end(),
[](const PortData& port) { return port.inprogress(); });
}
void BasicPortAllocatorSession::OnMessage(rtc::Message *message) {
switch (message->message_id) {
case MSG_CONFIG_START:
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
GetPortConfigurations();
break;
case MSG_CONFIG_READY:
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
OnConfigReady(static_cast<PortConfiguration*>(message->pdata));
break;
case MSG_ALLOCATE:
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
OnAllocate();
break;
case MSG_SEQUENCEOBJECTS_CREATED:
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
OnAllocationSequenceObjectsCreated();
break;
case MSG_CONFIG_STOP:
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
OnConfigStop();
break;
default:
RTC_NOTREACHED();
}
}
void BasicPortAllocatorSession::UpdateIceParametersInternal() {
for (PortData& port : ports_) {
port.port()->set_content_name(content_name());
port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd());
}
}
void BasicPortAllocatorSession::GetPortConfigurations() {
PortConfiguration* config = new PortConfiguration(allocator_->stun_servers(),
username(),
password());
for (const RelayServerConfig& turn_server : allocator_->turn_servers()) {
config->AddRelay(turn_server);
}
ConfigReady(config);
}
void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) {
network_thread_->Post(RTC_FROM_HERE, this, MSG_CONFIG_READY, config);
}
// Adds a configuration to the list.
void BasicPortAllocatorSession::OnConfigReady(PortConfiguration* config) {
if (config) {
configs_.push_back(config);
}
AllocatePorts();
}
void BasicPortAllocatorSession::OnConfigStop() {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
// If any of the allocated ports have not completed the candidates allocation,
// mark those as error. Since session doesn't need any new candidates
// at this stage of the allocation, it's safe to discard any new candidates.
bool send_signal = false;
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->inprogress()) {
// Updating port state to error, which didn't finish allocating candidates
// yet.
it->set_error();
send_signal = true;
}
}
// Did we stop any running sequences?
for (std::vector<AllocationSequence*>::iterator it = sequences_.begin();
it != sequences_.end() && !send_signal; ++it) {
if ((*it)->state() == AllocationSequence::kStopped) {
send_signal = true;
}
}
// If we stopped anything that was running, send a done signal now.
if (send_signal) {
MaybeSignalCandidatesAllocationDone();
}
}
void BasicPortAllocatorSession::AllocatePorts() {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
network_thread_->Post(RTC_FROM_HERE, this, MSG_ALLOCATE);
}
void BasicPortAllocatorSession::OnAllocate() {
if (network_manager_started_ && !IsStopped())
DoAllocate();
allocation_started_ = true;
}
std::vector<rtc::Network*> BasicPortAllocatorSession::GetNetworks() {
std::vector<rtc::Network*> networks;
rtc::NetworkManager* network_manager = allocator_->network_manager();
RTC_DCHECK(network_manager != nullptr);
// If the network permission state is BLOCKED, we just act as if the flag has
// been passed in.
if (network_manager->enumeration_permission() ==
rtc::NetworkManager::ENUMERATION_BLOCKED) {
set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
}
// If the adapter enumeration is disabled, we'll just bind to any address
// instead of specific NIC. This is to ensure the same routing for http
// traffic by OS is also used here to avoid any local or public IP leakage
// during stun process.
if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) {
network_manager->GetAnyAddressNetworks(&networks);
} else {
network_manager->GetNetworks(&networks);
// If network enumeration fails, use the ANY address as a fallback, so we
// can at least try gathering candidates using the default route chosen by
// the OS.
if (networks.empty()) {
network_manager->GetAnyAddressNetworks(&networks);
}
}
networks.erase(std::remove_if(networks.begin(), networks.end(),
[this](rtc::Network* network) {
return allocator_->network_ignore_mask() &
network->type();
}),
networks.end());
if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) {
uint16_t lowest_cost = rtc::kNetworkCostMax;
for (rtc::Network* network : networks) {
lowest_cost = std::min<uint16_t>(lowest_cost, network->GetCost());
}
networks.erase(std::remove_if(networks.begin(), networks.end(),
[lowest_cost](rtc::Network* network) {
return network->GetCost() >
lowest_cost + rtc::kNetworkCostLow;
}),
networks.end());
}
return networks;
}
// For each network, see if we have a sequence that covers it already. If not,
// create a new sequence to create the appropriate ports.
void BasicPortAllocatorSession::DoAllocate() {
bool done_signal_needed = false;
std::vector<rtc::Network*> networks = GetNetworks();
if (networks.empty()) {
LOG(LS_WARNING) << "Machine has no networks; no ports will be allocated";
done_signal_needed = true;
} else {
LOG(LS_INFO) << "Allocate ports on "<< networks.size() << " networks";
PortConfiguration* config = configs_.empty() ? nullptr : configs_.back();
for (uint32_t i = 0; i < networks.size(); ++i) {
uint32_t sequence_flags = flags();
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// If all the ports are disabled we should just fire the allocation
// done event and return.
done_signal_needed = true;
break;
}
if (!config || config->relays.empty()) {
// No relay ports specified in this config.
sequence_flags |= PORTALLOCATOR_DISABLE_RELAY;
}
if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) &&
networks[i]->GetBestIP().family() == AF_INET6) {
// Skip IPv6 networks unless the flag's been set.
continue;
}
if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6_ON_WIFI) &&
networks[i]->GetBestIP().family() == AF_INET6 &&
networks[i]->type() == rtc::ADAPTER_TYPE_WIFI) {
// Skip IPv6 Wi-Fi networks unless the flag's been set.
continue;
}
// Disable phases that would only create ports equivalent to
// ones that we have already made.
DisableEquivalentPhases(networks[i], config, &sequence_flags);
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// New AllocationSequence would have nothing to do, so don't make it.
continue;
}
AllocationSequence* sequence =
new AllocationSequence(this, networks[i], config, sequence_flags);
sequence->SignalPortAllocationComplete.connect(
this, &BasicPortAllocatorSession::OnPortAllocationComplete);
sequence->Init();
sequence->Start();
sequences_.push_back(sequence);
done_signal_needed = true;
}
}
if (done_signal_needed) {
network_thread_->Post(RTC_FROM_HERE, this, MSG_SEQUENCEOBJECTS_CREATED);
}
}
void BasicPortAllocatorSession::OnNetworksChanged() {
std::vector<rtc::Network*> networks = GetNetworks();
std::vector<rtc::Network*> failed_networks;
for (AllocationSequence* sequence : sequences_) {
// Mark the sequence as "network failed" if its network is not in
// |networks|.
if (!sequence->network_failed() &&
std::find(networks.begin(), networks.end(), sequence->network()) ==
networks.end()) {
sequence->OnNetworkFailed();
failed_networks.push_back(sequence->network());
}
}
std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks);
if (!ports_to_prune.empty()) {
LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " ports because their networks were gone";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
if (allocation_started_ && !IsStopped()) {
if (network_manager_started_) {
// If the network manager has started, it must be regathering.
SignalIceRegathering(this, IceRegatheringReason::NETWORK_CHANGE);
}
DoAllocate();
}
if (!network_manager_started_) {
LOG(LS_INFO) << "Network manager has started";
network_manager_started_ = true;
}
}
void BasicPortAllocatorSession::DisableEquivalentPhases(
rtc::Network* network,
PortConfiguration* config,
uint32_t* flags) {
for (uint32_t i = 0; i < sequences_.size() &&
(*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES;
++i) {
sequences_[i]->DisableEquivalentPhases(network, config, flags);
}
}
void BasicPortAllocatorSession::AddAllocatedPort(Port* port,
AllocationSequence * seq,
bool prepare_address) {
if (!port)
return;
LOG(LS_INFO) << "Adding allocated port for " << content_name();
port->set_content_name(content_name());
port->set_component(component());
port->set_generation(generation());
port->set_send_retransmit_count_attribute(
(flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0);
PortData data(port, seq);
ports_.push_back(data);
port->SignalCandidateReady.connect(
this, &BasicPortAllocatorSession::OnCandidateReady);
port->SignalPortComplete.connect(this,
&BasicPortAllocatorSession::OnPortComplete);
port->SignalDestroyed.connect(this,
&BasicPortAllocatorSession::OnPortDestroyed);
port->SignalPortError.connect(
this, &BasicPortAllocatorSession::OnPortError);
LOG_J(LS_INFO, port) << "Added port to allocator";
if (prepare_address)
port->PrepareAddress();
}
void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() {
allocation_sequences_created_ = true;
// Send candidate allocation complete signal if we have no sequences.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnCandidateReady(
Port* port, const Candidate& c) {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
PortData* data = FindPort(port);
RTC_DCHECK(data != NULL);
LOG_J(LS_INFO, port) << "Gathered candidate: " << c.ToSensitiveString();
// Discarding any candidate signal if port allocation status is
// already done with gathering.
if (!data->inprogress()) {
LOG(LS_WARNING)
<< "Discarding candidate because port is already done gathering.";
return;
}
// Mark that the port has a pairable candidate, either because we have a
// usable candidate from the port, or simply because the port is bound to the
// any address and therefore has no host candidate. This will trigger the port
// to start creating candidate pairs (connections) and issue connectivity
// checks. If port has already been marked as having a pairable candidate,
// do nothing here.
// Note: We should check whether any candidates may become ready after this
// because there we will check whether the candidate is generated by the ready
// ports, which may include this port.
bool pruned = false;
if (CandidatePairable(c, port) && !data->has_pairable_candidate()) {
data->set_has_pairable_candidate(true);
if (prune_turn_ports_ && port->Type() == RELAY_PORT_TYPE) {
pruned = PruneTurnPorts(port);
}
// If the current port is not pruned yet, SignalPortReady.
if (!data->pruned()) {
LOG_J(LS_INFO, port) << "Port ready.";
SignalPortReady(this, port);
port->KeepAliveUntilPruned();
}
}
ProtocolType pvalue;
bool candidate_protocol_enabled =
StringToProto(c.protocol().c_str(), &pvalue) &&
data->sequence()->ProtocolEnabled(pvalue);
if (data->ready() && CheckCandidateFilter(c) && candidate_protocol_enabled) {
std::vector<Candidate> candidates;
candidates.push_back(SanitizeRelatedAddress(c));
SignalCandidatesReady(this, candidates);
} else if (!candidate_protocol_enabled) {
LOG(LS_INFO)
<< "Not yet signaling candidate because protocol is not yet enabled.";
} else {
LOG(LS_INFO) << "Discarding candidate because it doesn't match filter.";
}
// If we have pruned any port, maybe need to signal port allocation done.
if (pruned) {
MaybeSignalCandidatesAllocationDone();
}
}
Port* BasicPortAllocatorSession::GetBestTurnPortForNetwork(
const std::string& network_name) const {
Port* best_turn_port = nullptr;
for (const PortData& data : ports_) {
if (data.port()->Network()->name() == network_name &&
data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
(!best_turn_port || ComparePort(data.port(), best_turn_port) > 0)) {
best_turn_port = data.port();
}
}
return best_turn_port;
}
bool BasicPortAllocatorSession::PruneTurnPorts(Port* newly_pairable_turn_port) {
// Note: We determine the same network based only on their network names. So
// if an IPv4 address and an IPv6 address have the same network name, they
// are considered the same network here.
const std::string& network_name = newly_pairable_turn_port->Network()->name();
Port* best_turn_port = GetBestTurnPortForNetwork(network_name);
// |port| is already in the list of ports, so the best port cannot be nullptr.
RTC_CHECK(best_turn_port != nullptr);
bool pruned = false;
std::vector<PortData*> ports_to_prune;
for (PortData& data : ports_) {
if (data.port()->Network()->name() == network_name &&
data.port()->Type() == RELAY_PORT_TYPE && !data.pruned() &&
ComparePort(data.port(), best_turn_port) < 0) {
pruned = true;
if (data.port() != newly_pairable_turn_port) {
// These ports will be pruned in PrunePortsAndRemoveCandidates.
ports_to_prune.push_back(&data);
} else {
data.Prune();
}
}
}
if (!ports_to_prune.empty()) {
LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " low-priority TURN ports";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
return pruned;
}
void BasicPortAllocatorSession::PruneAllPorts() {
for (PortData& data : ports_) {
data.Prune();
}
}
void BasicPortAllocatorSession::OnPortComplete(Port* port) {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
LOG_J(LS_INFO, port) << "Port completed gathering candidates.";
PortData* data = FindPort(port);
RTC_DCHECK(data != NULL);
// Ignore any late signals.
if (!data->inprogress()) {
return;
}
// Moving to COMPLETE state.
data->set_complete();
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnPortError(Port* port) {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
LOG_J(LS_INFO, port) << "Port encountered error while gathering candidates.";
PortData* data = FindPort(port);
RTC_DCHECK(data != NULL);
// We might have already given up on this port and stopped it.
if (!data->inprogress()) {
return;
}
// SignalAddressError is currently sent from StunPort/TurnPort.
// But this signal itself is generic.
data->set_error();
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnProtocolEnabled(AllocationSequence* seq,
ProtocolType proto) {
std::vector<Candidate> candidates;
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->sequence() != seq)
continue;
const std::vector<Candidate>& potentials = it->port()->Candidates();
for (size_t i = 0; i < potentials.size(); ++i) {
if (!CheckCandidateFilter(potentials[i])) {
continue;
}
ProtocolType pvalue;
bool candidate_protocol_enabled =
StringToProto(potentials[i].protocol().c_str(), &pvalue) &&
pvalue == proto;
if (candidate_protocol_enabled) {
LOG(LS_INFO) << "Signaling candidate because protocol was enabled: "
<< potentials[i].ToSensitiveString();
candidates.push_back(potentials[i]);
}
}
}
if (!candidates.empty()) {
SignalCandidatesReady(this, candidates);
}
}
bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const {
uint32_t filter = candidate_filter_;
// When binding to any address, before sending packets out, the getsockname
// returns all 0s, but after sending packets, it'll be the NIC used to
// send. All 0s is not a valid ICE candidate address and should be filtered
// out.
if (c.address().IsAnyIP()) {
return false;
}
if (c.type() == RELAY_PORT_TYPE) {
return ((filter & CF_RELAY) != 0);
} else if (c.type() == STUN_PORT_TYPE) {
return ((filter & CF_REFLEXIVE) != 0);
} else if (c.type() == LOCAL_PORT_TYPE) {
if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) {
// We allow host candidates if the filter allows server-reflexive
// candidates and the candidate is a public IP. Because we don't generate
// server-reflexive candidates if they have the same IP as the host
// candidate (i.e. when the host candidate is a public IP), filtering to
// only server-reflexive candidates won't work right when the host
// candidates have public IPs.
return true;
}
return ((filter & CF_HOST) != 0);
}
return false;
}
bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c,
const Port* port) const {
bool candidate_signalable = CheckCandidateFilter(c);
// When device enumeration is disabled (to prevent non-default IP addresses
// from leaking), we ping from some local candidates even though we don't
// signal them. However, if host candidates are also disabled (for example, to
// prevent even default IP addresses from leaking), we still don't want to
// ping from them, even if device enumeration is disabled. Thus, we check for
// both device enumeration and host candidates being disabled.
bool network_enumeration_disabled = c.address().IsAnyIP();
bool can_ping_from_candidate =
(port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME);
bool host_candidates_disabled = !(candidate_filter_ & CF_HOST);
return candidate_signalable ||
(network_enumeration_disabled && can_ping_from_candidate &&
!host_candidates_disabled);
}
void BasicPortAllocatorSession::OnPortAllocationComplete(
AllocationSequence* seq) {
// Send candidate allocation complete signal if all ports are done.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() {
if (CandidatesAllocationDone()) {
if (pooled()) {
LOG(LS_INFO) << "All candidates gathered for pooled session.";
} else {
LOG(LS_INFO) << "All candidates gathered for " << content_name() << ":"
<< component() << ":" << generation();
}
SignalCandidatesAllocationDone(this);
}
}
void BasicPortAllocatorSession::OnPortDestroyed(
PortInterface* port) {
RTC_DCHECK(rtc::Thread::Current() == network_thread_);
for (std::vector<PortData>::iterator iter = ports_.begin();
iter != ports_.end(); ++iter) {
if (port == iter->port()) {
ports_.erase(iter);
LOG_J(LS_INFO, port) << "Removed port from allocator ("
<< static_cast<int>(ports_.size()) << " remaining)";
return;
}
}
RTC_NOTREACHED();
}
BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort(
Port* port) {
for (std::vector<PortData>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
if (it->port() == port) {
return &*it;
}
}
return NULL;
}
std::vector<BasicPortAllocatorSession::PortData*>
BasicPortAllocatorSession::GetUnprunedPorts(
const std::vector<rtc::Network*>& networks) {
std::vector<PortData*> unpruned_ports;
for (PortData& port : ports_) {
if (!port.pruned() &&
std::find(networks.begin(), networks.end(),
port.sequence()->network()) != networks.end()) {
unpruned_ports.push_back(&port);
}
}
return unpruned_ports;
}
void BasicPortAllocatorSession::PrunePortsAndRemoveCandidates(
const std::vector<PortData*>& port_data_list) {
std::vector<PortInterface*> pruned_ports;
std::vector<Candidate> removed_candidates;
for (PortData* data : port_data_list) {
// Prune the port so that it may be destroyed.
data->Prune();
pruned_ports.push_back(data->port());
if (data->has_pairable_candidate()) {
GetCandidatesFromPort(*data, &removed_candidates);
// Mark the port as having no pairable candidates so that its candidates
// won't be removed multiple times.
data->set_has_pairable_candidate(false);
}
}
if (!pruned_ports.empty()) {
SignalPortsPruned(this, pruned_ports);
}
if (!removed_candidates.empty()) {
LOG(LS_INFO) << "Removed " << removed_candidates.size() << " candidates";
SignalCandidatesRemoved(this, removed_candidates);
}
}
// AllocationSequence
AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session,
rtc::Network* network,
PortConfiguration* config,
uint32_t flags)
: session_(session),
network_(network),
ip_(network->GetBestIP()),
config_(config),
state_(kInit),
flags_(flags),
udp_socket_(),
udp_port_(NULL),
phase_(0) {
}
void AllocationSequence::Init() {
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
rtc::SocketAddress(ip_, 0), session_->allocator()->min_port(),
session_->allocator()->max_port()));
if (udp_socket_) {
udp_socket_->SignalReadPacket.connect(
this, &AllocationSequence::OnReadPacket);
}
// Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP
// are next available options to setup a communication channel.
}
}
void AllocationSequence::Clear() {
udp_port_ = NULL;
turn_ports_.clear();
}
void AllocationSequence::OnNetworkFailed() {
RTC_DCHECK(!network_failed_);
network_failed_ = true;
// Stop the allocation sequence if its network failed.
Stop();
}
AllocationSequence::~AllocationSequence() {
session_->network_thread()->Clear(this);
}
void AllocationSequence::DisableEquivalentPhases(rtc::Network* network,
PortConfiguration* config, uint32_t* flags) {
if (network_failed_) {
// If the network of this allocation sequence has ever become failed,
// it won't be equivalent to the new network.
return;
}
if (!((network == network_) && (ip_ == network->GetBestIP()))) {
// Different network setup; nothing is equivalent.
return;
}
// Else turn off the stuff that we've already got covered.
// Every config implicitly specifies local, so turn that off right away.
*flags |= PORTALLOCATOR_DISABLE_UDP;
*flags |= PORTALLOCATOR_DISABLE_TCP;
if (config_ && config) {
if (config_->StunServers() == config->StunServers()) {
// Already got this STUN servers covered.
*flags |= PORTALLOCATOR_DISABLE_STUN;
}
if (!config_->relays.empty()) {
// Already got relays covered.
// NOTE: This will even skip a _different_ set of relay servers if we
// were to be given one, but that never happens in our codebase. Should
// probably get rid of the list in PortConfiguration and just keep a
// single relay server in each one.
*flags |= PORTALLOCATOR_DISABLE_RELAY;
}
}
}
void AllocationSequence::Start() {
state_ = kRunning;
session_->network_thread()->Post(RTC_FROM_HERE, this, MSG_ALLOCATION_PHASE);
}
void AllocationSequence::Stop() {
// If the port is completed, don't set it to stopped.
if (state_ == kRunning) {
state_ = kStopped;
session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
}
}
void AllocationSequence::OnMessage(rtc::Message* msg) {
RTC_DCHECK(rtc::Thread::Current() == session_->network_thread());
RTC_DCHECK(msg->message_id == MSG_ALLOCATION_PHASE);
const char* const PHASE_NAMES[kNumPhases] = {
"Udp", "Relay", "Tcp", "SslTcp"
};
// Perform all of the phases in the current step.
LOG_J(LS_INFO, network_) << "Allocation Phase="
<< PHASE_NAMES[phase_];
switch (phase_) {
case PHASE_UDP:
CreateUDPPorts();
CreateStunPorts();
EnableProtocol(PROTO_UDP);
break;
case PHASE_RELAY:
CreateRelayPorts();
break;
case PHASE_TCP:
CreateTCPPorts();
EnableProtocol(PROTO_TCP);
break;
case PHASE_SSLTCP:
state_ = kCompleted;
EnableProtocol(PROTO_SSLTCP);
break;
default:
RTC_NOTREACHED();
}
if (state() == kRunning) {
++phase_;
session_->network_thread()->PostDelayed(RTC_FROM_HERE,
session_->allocator()->step_delay(),
this, MSG_ALLOCATION_PHASE);
} else {
// If all phases in AllocationSequence are completed, no allocation
// steps needed further. Canceling pending signal.
session_->network_thread()->Clear(this, MSG_ALLOCATION_PHASE);
SignalPortAllocationComplete(this);
}
}
void AllocationSequence::EnableProtocol(ProtocolType proto) {
if (!ProtocolEnabled(proto)) {
protocols_.push_back(proto);
session_->OnProtocolEnabled(this, proto);
}
}
bool AllocationSequence::ProtocolEnabled(ProtocolType proto) const {
for (ProtocolList::const_iterator it = protocols_.begin();
it != protocols_.end(); ++it) {
if (*it == proto)
return true;
}
return false;
}
void AllocationSequence::CreateUDPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) {
LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping.";
return;
}
// TODO(mallinath) - Remove UDPPort creating socket after shared socket
// is enabled completely.
UDPPort* port = NULL;
bool emit_local_candidate_for_anyaddress =
!IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) {
port = UDPPort::Create(
session_->network_thread(), session_->socket_factory(), network_,
udp_socket_.get(), session_->username(), session_->password(),
session_->allocator()->origin(), emit_local_candidate_for_anyaddress);
} else {
port = UDPPort::Create(
session_->network_thread(), session_->socket_factory(), network_, ip_,
session_->allocator()->min_port(), session_->allocator()->max_port(),
session_->username(), session_->password(),
session_->allocator()->origin(), emit_local_candidate_for_anyaddress);
}
if (port) {
// If shared socket is enabled, STUN candidate will be allocated by the
// UDPPort.
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_port_ = port;
port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed);
// If STUN is not disabled, setting stun server address to port.
if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
if (config_ && !config_->StunServers().empty()) {
LOG(LS_INFO) << "AllocationSequence: UDPPort will be handling the "
<< "STUN candidate generation.";
port->set_server_addresses(config_->StunServers());
}
}
}
session_->AddAllocatedPort(port, this, true);
}
}
void AllocationSequence::CreateTCPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) {
LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping.";
return;
}
Port* port = TCPPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(), session_->password(),
session_->allocator()->allow_tcp_listen());
if (port) {
session_->AddAllocatedPort(port, this, true);
// Since TCPPort is not created using shared socket, |port| will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateStunPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping.";
return;
}
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
return;
}
if (!(config_ && !config_->StunServers().empty())) {
LOG(LS_WARNING)
<< "AllocationSequence: No STUN server configured, skipping.";
return;
}
StunPort* port = StunPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(), session_->password(),
config_->StunServers(),
session_->allocator()->origin());
if (port) {
session_->AddAllocatedPort(port, this, true);
// Since StunPort is not created using shared socket, |port| will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateRelayPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) {
LOG(LS_VERBOSE) << "AllocationSequence: Relay ports disabled, skipping.";
return;
}
// If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we
// ought to have a relay list for them here.
RTC_DCHECK(config_ && !config_->relays.empty());
if (!(config_ && !config_->relays.empty())) {
LOG(LS_WARNING)
<< "AllocationSequence: No relay server configured, skipping.";
return;
}
for (RelayServerConfig& relay : config_->relays) {
if (relay.type == RELAY_GTURN) {
CreateGturnPort(relay);
} else if (relay.type == RELAY_TURN) {
CreateTurnPort(relay);
} else {
RTC_NOTREACHED();
}
}
}
void AllocationSequence::CreateGturnPort(const RelayServerConfig& config) {
// TODO(mallinath) - Rename RelayPort to GTurnPort.
RelayPort* port = RelayPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
config_->username, config_->password);
if (port) {
// Since RelayPort is not created using shared socket, |port| will not be
// added to the dequeue.
// Note: We must add the allocated port before we add addresses because
// the latter will create candidates that need name and preference
// settings. However, we also can't prepare the address (normally
// done by AddAllocatedPort) until we have these addresses. So we
// wait to do that until below.
session_->AddAllocatedPort(port, this, false);
// Add the addresses of this protocol.
PortList::const_iterator relay_port;
for (relay_port = config.ports.begin();
relay_port != config.ports.end();
++relay_port) {
port->AddServerAddress(*relay_port);
port->AddExternalAddress(*relay_port);
}
// Start fetching an address for this port.
port->PrepareAddress();
}
}
void AllocationSequence::CreateTurnPort(const RelayServerConfig& config) {
PortList::const_iterator relay_port;
for (relay_port = config.ports.begin();
relay_port != config.ports.end(); ++relay_port) {
TurnPort* port = NULL;
// Skip UDP connections to relay servers if it's disallowed.
if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) &&
relay_port->proto == PROTO_UDP) {
continue;
}
// Do not create a port if the server address family is known and does
// not match the local IP address family.
int server_ip_family = relay_port->address.ipaddr().family();
int local_ip_family = ip_.family();
if (server_ip_family != AF_UNSPEC && server_ip_family != local_ip_family) {
LOG(LS_INFO) << "Server and local address families are not compatible. "
<< "Server address: "
<< relay_port->address.ipaddr().ToString()
<< " Local address: " << ip_.ToString();
continue;
}
// Shared socket mode must be enabled only for UDP based ports. Hence
// don't pass shared socket for ports which will create TCP sockets.
// TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled
// due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) &&
relay_port->proto == PROTO_UDP && udp_socket_) {
port = TurnPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, udp_socket_.get(),
session_->username(), session_->password(),
*relay_port, config.credentials, config.priority,
session_->allocator()->origin());
turn_ports_.push_back(port);
// Listen to the port destroyed signal, to allow AllocationSequence to
// remove entrt from it's map.
port->SignalDestroyed.connect(this, &AllocationSequence::OnPortDestroyed);
} else {
port = TurnPort::Create(session_->network_thread(),
session_->socket_factory(),
network_, ip_,
session_->allocator()->min_port(),
session_->allocator()->max_port(),
session_->username(),
session_->password(),
*relay_port, config.credentials, config.priority,
session_->allocator()->origin());
}
RTC_DCHECK(port != NULL);
Add disabled certificate check support to IceServer PeerConnection API. Refactor "OPT_SSLTCP" renaming it to "OPT_TLS_FAKE", making it clear that it's not actually some kind of SSL over TCP. Also making it clear that it's mutually exclusive with OPT_TLS. Maintaining deprecated backwards compatible support for "OPT_SSLTCP". Add "OPT_TLS_INSECURE" that implements the new certificate-check disabled TLS mode, which is also mutually exclusive with the other TLS options. PortAllocator: Add a new TLS policy enum TlsCertPolicy which defines the new insecure mode and added it as a RelayCredentials member. TurnPort: Add new TLS policy member with appropriate getter and setter to avoid constructor bloat. Initialize it from the RelayCredentials after the TurnPort is created. Expose the new feature in the PeerConnection API via IceServer.tls_certificate_policy as well as via the Android JNI PeerConnection API. For security reasons we ensure that: 1) The policy is always explicitly initialized to secure. 2) API users have to explicitly integrate with the feature to use it, and will otherwise get no change in behavior. 3) The feature is not immediately exposed in non-native contexts. For example, disabling of certificate validation is not implemented via URI parsing since this would immediately allow it to be used from a web page. This is a second attempt of https://codereview.webrtc.org/2557803002/ which was rolled back in https://codereview.webrtc.org/2590153002/ BUG=webrtc:6840 Review-Url: https://codereview.webrtc.org/2594623002 Cr-Commit-Position: refs/heads/master@{#15967}
2017-01-09 08:35:45 -08:00
port->SetTlsCertPolicy(config.tls_cert_policy);
session_->AddAllocatedPort(port, this, true);
}
}
void AllocationSequence::OnReadPacket(
rtc::AsyncPacketSocket* socket, const char* data, size_t size,
const rtc::SocketAddress& remote_addr,
const rtc::PacketTime& packet_time) {
RTC_DCHECK(socket == udp_socket_.get());
bool turn_port_found = false;
// Try to find the TurnPort that matches the remote address. Note that the
// message could be a STUN binding response if the TURN server is also used as
// a STUN server. We don't want to parse every message here to check if it is
// a STUN binding response, so we pass the message to TurnPort regardless of
// the message type. The TurnPort will just ignore the message since it will
// not find any request by transaction ID.
for (TurnPort* port : turn_ports_) {
if (port->server_address().address == remote_addr) {
if (port->HandleIncomingPacket(socket, data, size, remote_addr,
packet_time)) {
return;
}
turn_port_found = true;
}
}
if (udp_port_) {
const ServerAddresses& stun_servers = udp_port_->server_addresses();
// Pass the packet to the UdpPort if there is no matching TurnPort, or if
// the TURN server is also a STUN server.
if (!turn_port_found ||
stun_servers.find(remote_addr) != stun_servers.end()) {
RTC_DCHECK(udp_port_->SharedSocket());
udp_port_->HandleIncomingPacket(socket, data, size, remote_addr,
packet_time);
}
}
}
void AllocationSequence::OnPortDestroyed(PortInterface* port) {
if (udp_port_ == port) {
udp_port_ = NULL;
return;
}
auto it = std::find(turn_ports_.begin(), turn_ports_.end(), port);
if (it != turn_ports_.end()) {
turn_ports_.erase(it);
} else {
LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port.";
RTC_NOTREACHED();
}
}
// PortConfiguration
PortConfiguration::PortConfiguration(
const rtc::SocketAddress& stun_address,
const std::string& username,
const std::string& password)
: stun_address(stun_address), username(username), password(password) {
if (!stun_address.IsNil())
stun_servers.insert(stun_address);
}
PortConfiguration::PortConfiguration(const ServerAddresses& stun_servers,
const std::string& username,
const std::string& password)
: stun_servers(stun_servers),
username(username),
password(password) {
if (!stun_servers.empty())
stun_address = *(stun_servers.begin());
}
ServerAddresses PortConfiguration::StunServers() {
if (!stun_address.IsNil() &&
stun_servers.find(stun_address) == stun_servers.end()) {
stun_servers.insert(stun_address);
}
// Every UDP TURN server should also be used as a STUN server.
ServerAddresses turn_servers = GetRelayServerAddresses(RELAY_TURN, PROTO_UDP);
for (const rtc::SocketAddress& turn_server : turn_servers) {
if (stun_servers.find(turn_server) == stun_servers.end()) {
stun_servers.insert(turn_server);
}
}
return stun_servers;
}
void PortConfiguration::AddRelay(const RelayServerConfig& config) {
relays.push_back(config);
}
bool PortConfiguration::SupportsProtocol(
const RelayServerConfig& relay, ProtocolType type) const {
PortList::const_iterator relay_port;
for (relay_port = relay.ports.begin();
relay_port != relay.ports.end();
++relay_port) {
if (relay_port->proto == type)
return true;
}
return false;
}
bool PortConfiguration::SupportsProtocol(RelayType turn_type,
ProtocolType type) const {
for (size_t i = 0; i < relays.size(); ++i) {
if (relays[i].type == turn_type &&
SupportsProtocol(relays[i], type))
return true;
}
return false;
}
ServerAddresses PortConfiguration::GetRelayServerAddresses(
RelayType turn_type, ProtocolType type) const {
ServerAddresses servers;
for (size_t i = 0; i < relays.size(); ++i) {
if (relays[i].type == turn_type && SupportsProtocol(relays[i], type)) {
servers.insert(relays[i].ports.front().address);
}
}
return servers;
}
} // namespace cricket