134 lines
4.5 KiB
C++
134 lines
4.5 KiB
C++
|
|
/*
|
||
|
|
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
|
||
|
|
*
|
||
|
|
* Use of this source code is governed by a BSD-style license
|
||
|
|
* that can be found in the LICENSE file in the root of the source
|
||
|
|
* tree. An additional intellectual property rights grant can be found
|
||
|
|
* in the file PATENTS. All contributing project authors may
|
||
|
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
|
*/
|
||
|
|
|
||
|
|
#include <math.h>
|
||
|
|
|
||
|
|
#include <algorithm>
|
||
|
|
|
||
|
|
#include "webrtc/base/gunit.h"
|
||
|
|
#include "webrtc/base/random.h"
|
||
|
|
#include "webrtc/base/timestampaligner.h"
|
||
|
|
|
||
|
|
namespace rtc {
|
||
|
|
|
||
|
|
namespace {
|
||
|
|
// Computes the difference x_k - mean(x), when x_k is the linear sequence x_k =
|
||
|
|
// k, and the "mean" is plain mean for the first |window_size| samples, followed
|
||
|
|
// by exponential averaging with weight 1 / |window_size| for each new sample.
|
||
|
|
// This is needed to predict the effect of camera clock drift on the timestamp
|
||
|
|
// translation. See the comment on TimestampAligner::UpdateOffset for more
|
||
|
|
// context.
|
||
|
|
double MeanTimeDifference(int nsamples, int window_size) {
|
||
|
|
if (nsamples <= window_size) {
|
||
|
|
// Plain averaging.
|
||
|
|
return nsamples / 2.0;
|
||
|
|
} else {
|
||
|
|
// Exponential convergence towards
|
||
|
|
// interval_error * (window_size - 1)
|
||
|
|
double alpha = 1.0 - 1.0 / window_size;
|
||
|
|
|
||
|
|
return ((window_size - 1) -
|
||
|
|
(window_size / 2.0 - 1) * pow(alpha, nsamples - window_size));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
} // Anonymous namespace
|
||
|
|
|
||
|
|
class TimestampAlignerTest : public testing::Test {
|
||
|
|
protected:
|
||
|
|
void TestTimestampFilter(double rel_freq_error) {
|
||
|
|
const int64_t kEpoch = 10000;
|
||
|
|
const int64_t kJitterUs = 5000;
|
||
|
|
const int64_t kIntervalUs = 33333; // 30 FPS
|
||
|
|
const int kWindowSize = 100;
|
||
|
|
const int kNumFrames = 3 * kWindowSize;
|
||
|
|
|
||
|
|
int64_t interval_error_us = kIntervalUs * rel_freq_error;
|
||
|
|
int64_t system_start_us = rtc::TimeMicros();
|
||
|
|
webrtc::Random random(17);
|
||
|
|
|
||
|
|
int64_t prev_translated_time_us = system_start_us;
|
||
|
|
|
||
|
|
for (int i = 0; i < kNumFrames; i++) {
|
||
|
|
// Camera time subject to drift.
|
||
|
|
int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us);
|
||
|
|
int64_t system_time_us = system_start_us + i * kIntervalUs;
|
||
|
|
// And system time readings are subject to jitter.
|
||
|
|
int64_t system_measured_us = system_time_us + random.Rand(kJitterUs);
|
||
|
|
|
||
|
|
int64_t offset_us =
|
||
|
|
timestamp_aligner_.UpdateOffset(camera_time_us, system_measured_us);
|
||
|
|
|
||
|
|
int64_t filtered_time_us = camera_time_us + offset_us;
|
||
|
|
int64_t translated_time_us = timestamp_aligner_.ClipTimestamp(
|
||
|
|
filtered_time_us, system_measured_us);
|
||
|
|
|
||
|
|
EXPECT_LE(translated_time_us, system_measured_us);
|
||
|
|
EXPECT_GE(translated_time_us, prev_translated_time_us);
|
||
|
|
|
||
|
|
// The relative frequency error contributes to the expected error
|
||
|
|
// by a factor which is the difference between the current time
|
||
|
|
// and the average of earlier sample times.
|
||
|
|
int64_t expected_error_us =
|
||
|
|
kJitterUs / 2 +
|
||
|
|
rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize);
|
||
|
|
|
||
|
|
int64_t bias_us = filtered_time_us - translated_time_us;
|
||
|
|
EXPECT_GE(bias_us, 0);
|
||
|
|
|
||
|
|
if (i == 0) {
|
||
|
|
EXPECT_EQ(translated_time_us, system_measured_us);
|
||
|
|
} else {
|
||
|
|
EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us,
|
||
|
|
2.0 * kJitterUs / sqrt(std::max(i, kWindowSize)));
|
||
|
|
}
|
||
|
|
// If the camera clock runs too fast (rel_freq_error > 0.0), The
|
||
|
|
// bias is expected to roughly cancel the expected error from the
|
||
|
|
// clock drift, as this grows. Otherwise, it reflects the
|
||
|
|
// measurement noise. The tolerances here were selected after some
|
||
|
|
// trial and error.
|
||
|
|
if (i < 10 || rel_freq_error <= 0.0) {
|
||
|
|
EXPECT_LE(bias_us, 3000);
|
||
|
|
} else {
|
||
|
|
EXPECT_NEAR(bias_us, expected_error_us, 1500);
|
||
|
|
}
|
||
|
|
prev_translated_time_us = translated_time_us;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
private:
|
||
|
|
TimestampAligner timestamp_aligner_;
|
||
|
|
};
|
||
|
|
|
||
|
|
TEST_F(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) {
|
||
|
|
TestTimestampFilter(0.0);
|
||
|
|
}
|
||
|
|
|
||
|
|
// 100 ppm is a worst case for a reasonable crystal.
|
||
|
|
TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) {
|
||
|
|
TestTimestampFilter(0.0001);
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) {
|
||
|
|
TestTimestampFilter(-0.0001);
|
||
|
|
}
|
||
|
|
|
||
|
|
// 3000 ppm, 3 ms / s, is the worst observed drift, see
|
||
|
|
// https://bugs.chromium.org/p/webrtc/issues/detail?id=5456
|
||
|
|
TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) {
|
||
|
|
TestTimestampFilter(0.003);
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) {
|
||
|
|
TestTimestampFilter(-0.003);
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace rtc
|