Format the rest of C files in the repo
Formatting done via: git ls-files | grep -E '.*\.c$' | grep -Ev '^common_audio/signal_processing.*\.c$' | xargs clang-format -i No-Iwyu: Includes didn't change and it isn't related to formatting Bug: webrtc:42225392 Change-Id: Id78af8e3eceada9995e53b6a0fdc1a8cb5ffd1f3 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/373907 Reviewed-by: Danil Chapovalov <danilchap@webrtc.org> Reviewed-by: Harald Alvestrand <hta@webrtc.org> Commit-Queue: Harald Alvestrand <hta@webrtc.org> Cr-Commit-Position: refs/heads/main@{#43699}
This commit is contained in:
parent
7eb83a3a18
commit
c940dba16a
@ -28,10 +28,9 @@ static size_t GetBufferReadRegions(RingBuffer* buf,
|
||||
size_t* data_ptr_bytes_1,
|
||||
void** data_ptr_2,
|
||||
size_t* data_ptr_bytes_2) {
|
||||
|
||||
const size_t readable_elements = WebRtc_available_read(buf);
|
||||
const size_t read_elements = (readable_elements < element_count ?
|
||||
readable_elements : element_count);
|
||||
const size_t read_elements =
|
||||
(readable_elements < element_count ? readable_elements : element_count);
|
||||
const size_t margin = buf->element_count - buf->read_pos;
|
||||
|
||||
// Check to see if read is not contiguous.
|
||||
@ -99,7 +98,6 @@ size_t WebRtc_ReadBuffer(RingBuffer* self,
|
||||
void** data_ptr,
|
||||
void* data,
|
||||
size_t element_count) {
|
||||
|
||||
if (self == NULL) {
|
||||
return 0;
|
||||
}
|
||||
@ -112,17 +110,14 @@ size_t WebRtc_ReadBuffer(RingBuffer* self,
|
||||
void* buf_ptr_2 = NULL;
|
||||
size_t buf_ptr_bytes_1 = 0;
|
||||
size_t buf_ptr_bytes_2 = 0;
|
||||
const size_t read_count = GetBufferReadRegions(self,
|
||||
element_count,
|
||||
&buf_ptr_1,
|
||||
&buf_ptr_bytes_1,
|
||||
&buf_ptr_2,
|
||||
&buf_ptr_bytes_2);
|
||||
const size_t read_count =
|
||||
GetBufferReadRegions(self, element_count, &buf_ptr_1, &buf_ptr_bytes_1,
|
||||
&buf_ptr_2, &buf_ptr_bytes_2);
|
||||
if (buf_ptr_bytes_2 > 0) {
|
||||
// We have a wrap around when reading the buffer. Copy the buffer data to
|
||||
// `data` and point to it.
|
||||
memcpy(data, buf_ptr_1, buf_ptr_bytes_1);
|
||||
memcpy(((char*) data) + buf_ptr_bytes_1, buf_ptr_2, buf_ptr_bytes_2);
|
||||
memcpy(((char*)data) + buf_ptr_bytes_1, buf_ptr_2, buf_ptr_bytes_2);
|
||||
buf_ptr_1 = data;
|
||||
} else if (!data_ptr) {
|
||||
// No wrap, but a memcpy was requested.
|
||||
@ -134,7 +129,7 @@ size_t WebRtc_ReadBuffer(RingBuffer* self,
|
||||
}
|
||||
|
||||
// Update read position
|
||||
WebRtc_MoveReadPtr(self, (int) read_count);
|
||||
WebRtc_MoveReadPtr(self, (int)read_count);
|
||||
|
||||
return read_count;
|
||||
}
|
||||
@ -152,21 +147,21 @@ size_t WebRtc_WriteBuffer(RingBuffer* self,
|
||||
|
||||
{
|
||||
const size_t free_elements = WebRtc_available_write(self);
|
||||
const size_t write_elements = (free_elements < element_count ? free_elements
|
||||
: element_count);
|
||||
const size_t write_elements =
|
||||
(free_elements < element_count ? free_elements : element_count);
|
||||
size_t n = write_elements;
|
||||
const size_t margin = self->element_count - self->write_pos;
|
||||
|
||||
if (write_elements > margin) {
|
||||
// Buffer wrap around when writing.
|
||||
memcpy(self->data + self->write_pos * self->element_size,
|
||||
data, margin * self->element_size);
|
||||
memcpy(self->data + self->write_pos * self->element_size, data,
|
||||
margin * self->element_size);
|
||||
self->write_pos = 0;
|
||||
n -= margin;
|
||||
self->rw_wrap = DIFF_WRAP;
|
||||
}
|
||||
memcpy(self->data + self->write_pos * self->element_size,
|
||||
((const char*) data) + ((write_elements - n) * self->element_size),
|
||||
((const char*)data) + ((write_elements - n) * self->element_size),
|
||||
n * self->element_size);
|
||||
self->write_pos += n;
|
||||
|
||||
@ -182,9 +177,9 @@ int WebRtc_MoveReadPtr(RingBuffer* self, int element_count) {
|
||||
{
|
||||
// We need to be able to take care of negative changes, hence use "int"
|
||||
// instead of "size_t".
|
||||
const int free_elements = (int) WebRtc_available_write(self);
|
||||
const int readable_elements = (int) WebRtc_available_read(self);
|
||||
int read_pos = (int) self->read_pos;
|
||||
const int free_elements = (int)WebRtc_available_write(self);
|
||||
const int readable_elements = (int)WebRtc_available_read(self);
|
||||
int read_pos = (int)self->read_pos;
|
||||
|
||||
if (element_count > readable_elements) {
|
||||
element_count = readable_elements;
|
||||
@ -194,18 +189,18 @@ int WebRtc_MoveReadPtr(RingBuffer* self, int element_count) {
|
||||
}
|
||||
|
||||
read_pos += element_count;
|
||||
if (read_pos > (int) self->element_count) {
|
||||
if (read_pos > (int)self->element_count) {
|
||||
// Buffer wrap around. Restart read position and wrap indicator.
|
||||
read_pos -= (int) self->element_count;
|
||||
read_pos -= (int)self->element_count;
|
||||
self->rw_wrap = SAME_WRAP;
|
||||
}
|
||||
if (read_pos < 0) {
|
||||
// Buffer wrap around. Restart read position and wrap indicator.
|
||||
read_pos += (int) self->element_count;
|
||||
read_pos += (int)self->element_count;
|
||||
self->rw_wrap = DIFF_WRAP;
|
||||
}
|
||||
|
||||
self->read_pos = (size_t) read_pos;
|
||||
self->read_pos = (size_t)read_pos;
|
||||
|
||||
return element_count;
|
||||
}
|
||||
|
||||
@ -10,48 +10,48 @@
|
||||
|
||||
#include "common_audio/vad/vad_core.h"
|
||||
|
||||
#include "rtc_base/sanitizer.h"
|
||||
#include "common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "common_audio/vad/vad_filterbank.h"
|
||||
#include "common_audio/vad/vad_gmm.h"
|
||||
#include "common_audio/vad/vad_sp.h"
|
||||
#include "rtc_base/sanitizer.h"
|
||||
|
||||
// Spectrum Weighting
|
||||
static const int16_t kSpectrumWeight[kNumChannels] = { 6, 8, 10, 12, 14, 16 };
|
||||
static const int16_t kNoiseUpdateConst = 655; // Q15
|
||||
static const int16_t kSpeechUpdateConst = 6554; // Q15
|
||||
static const int16_t kBackEta = 154; // Q8
|
||||
static const int16_t kSpectrumWeight[kNumChannels] = {6, 8, 10, 12, 14, 16};
|
||||
static const int16_t kNoiseUpdateConst = 655; // Q15
|
||||
static const int16_t kSpeechUpdateConst = 6554; // Q15
|
||||
static const int16_t kBackEta = 154; // Q8
|
||||
// Minimum difference between the two models, Q5
|
||||
static const int16_t kMinimumDifference[kNumChannels] = {
|
||||
544, 544, 576, 576, 576, 576 };
|
||||
static const int16_t kMinimumDifference[kNumChannels] = {544, 544, 576,
|
||||
576, 576, 576};
|
||||
// Upper limit of mean value for speech model, Q7
|
||||
static const int16_t kMaximumSpeech[kNumChannels] = {
|
||||
11392, 11392, 11520, 11520, 11520, 11520 };
|
||||
static const int16_t kMaximumSpeech[kNumChannels] = {11392, 11392, 11520,
|
||||
11520, 11520, 11520};
|
||||
// Minimum value for mean value
|
||||
static const int16_t kMinimumMean[kNumGaussians] = { 640, 768 };
|
||||
static const int16_t kMinimumMean[kNumGaussians] = {640, 768};
|
||||
// Upper limit of mean value for noise model, Q7
|
||||
static const int16_t kMaximumNoise[kNumChannels] = {
|
||||
9216, 9088, 8960, 8832, 8704, 8576 };
|
||||
static const int16_t kMaximumNoise[kNumChannels] = {9216, 9088, 8960,
|
||||
8832, 8704, 8576};
|
||||
// Start values for the Gaussian models, Q7
|
||||
// Weights for the two Gaussians for the six channels (noise)
|
||||
static const int16_t kNoiseDataWeights[kTableSize] = {
|
||||
34, 62, 72, 66, 53, 25, 94, 66, 56, 62, 75, 103 };
|
||||
static const int16_t kNoiseDataWeights[kTableSize] = {34, 62, 72, 66, 53, 25,
|
||||
94, 66, 56, 62, 75, 103};
|
||||
// Weights for the two Gaussians for the six channels (speech)
|
||||
static const int16_t kSpeechDataWeights[kTableSize] = {
|
||||
48, 82, 45, 87, 50, 47, 80, 46, 83, 41, 78, 81 };
|
||||
static const int16_t kSpeechDataWeights[kTableSize] = {48, 82, 45, 87, 50, 47,
|
||||
80, 46, 83, 41, 78, 81};
|
||||
// Means for the two Gaussians for the six channels (noise)
|
||||
static const int16_t kNoiseDataMeans[kTableSize] = {
|
||||
6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362 };
|
||||
6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362};
|
||||
// Means for the two Gaussians for the six channels (speech)
|
||||
static const int16_t kSpeechDataMeans[kTableSize] = {
|
||||
8306, 10085, 10078, 11823, 11843, 6309, 9473, 9571, 10879, 7581, 8180, 7483
|
||||
};
|
||||
static const int16_t kSpeechDataMeans[kTableSize] = {8306, 10085, 10078, 11823,
|
||||
11843, 6309, 9473, 9571,
|
||||
10879, 7581, 8180, 7483};
|
||||
// Stds for the two Gaussians for the six channels (noise)
|
||||
static const int16_t kNoiseDataStds[kTableSize] = {
|
||||
378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455 };
|
||||
378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455};
|
||||
// Stds for the two Gaussians for the six channels (speech)
|
||||
static const int16_t kSpeechDataStds[kTableSize] = {
|
||||
555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850 };
|
||||
555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850};
|
||||
|
||||
// Constants used in GmmProbability().
|
||||
//
|
||||
@ -70,25 +70,25 @@ static const int kInitCheck = 42;
|
||||
// Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
|
||||
//
|
||||
// Mode 0, Quality.
|
||||
static const int16_t kOverHangMax1Q[3] = { 8, 4, 3 };
|
||||
static const int16_t kOverHangMax2Q[3] = { 14, 7, 5 };
|
||||
static const int16_t kLocalThresholdQ[3] = { 24, 21, 24 };
|
||||
static const int16_t kGlobalThresholdQ[3] = { 57, 48, 57 };
|
||||
static const int16_t kOverHangMax1Q[3] = {8, 4, 3};
|
||||
static const int16_t kOverHangMax2Q[3] = {14, 7, 5};
|
||||
static const int16_t kLocalThresholdQ[3] = {24, 21, 24};
|
||||
static const int16_t kGlobalThresholdQ[3] = {57, 48, 57};
|
||||
// Mode 1, Low bitrate.
|
||||
static const int16_t kOverHangMax1LBR[3] = { 8, 4, 3 };
|
||||
static const int16_t kOverHangMax2LBR[3] = { 14, 7, 5 };
|
||||
static const int16_t kLocalThresholdLBR[3] = { 37, 32, 37 };
|
||||
static const int16_t kGlobalThresholdLBR[3] = { 100, 80, 100 };
|
||||
static const int16_t kOverHangMax1LBR[3] = {8, 4, 3};
|
||||
static const int16_t kOverHangMax2LBR[3] = {14, 7, 5};
|
||||
static const int16_t kLocalThresholdLBR[3] = {37, 32, 37};
|
||||
static const int16_t kGlobalThresholdLBR[3] = {100, 80, 100};
|
||||
// Mode 2, Aggressive.
|
||||
static const int16_t kOverHangMax1AGG[3] = { 6, 3, 2 };
|
||||
static const int16_t kOverHangMax2AGG[3] = { 9, 5, 3 };
|
||||
static const int16_t kLocalThresholdAGG[3] = { 82, 78, 82 };
|
||||
static const int16_t kGlobalThresholdAGG[3] = { 285, 260, 285 };
|
||||
static const int16_t kOverHangMax1AGG[3] = {6, 3, 2};
|
||||
static const int16_t kOverHangMax2AGG[3] = {9, 5, 3};
|
||||
static const int16_t kLocalThresholdAGG[3] = {82, 78, 82};
|
||||
static const int16_t kGlobalThresholdAGG[3] = {285, 260, 285};
|
||||
// Mode 3, Very aggressive.
|
||||
static const int16_t kOverHangMax1VAG[3] = { 6, 3, 2 };
|
||||
static const int16_t kOverHangMax2VAG[3] = { 9, 5, 3 };
|
||||
static const int16_t kLocalThresholdVAG[3] = { 94, 94, 94 };
|
||||
static const int16_t kGlobalThresholdVAG[3] = { 1100, 1050, 1100 };
|
||||
static const int16_t kOverHangMax1VAG[3] = {6, 3, 2};
|
||||
static const int16_t kOverHangMax2VAG[3] = {9, 5, 3};
|
||||
static const int16_t kLocalThresholdVAG[3] = {94, 94, 94};
|
||||
static const int16_t kGlobalThresholdVAG[3] = {1100, 1050, 1100};
|
||||
|
||||
// Calculates the weighted average w.r.t. number of Gaussians. The `data` are
|
||||
// updated with an `offset` before averaging.
|
||||
@ -98,7 +98,8 @@ static const int16_t kGlobalThresholdVAG[3] = { 1100, 1050, 1100 };
|
||||
// - weights [i] : Weights used for averaging.
|
||||
//
|
||||
// returns : The weighted average.
|
||||
static int32_t WeightedAverage(int16_t* data, int16_t offset,
|
||||
static int32_t WeightedAverage(int16_t* data,
|
||||
int16_t offset,
|
||||
const int16_t* weights) {
|
||||
int k;
|
||||
int32_t weighted_average = 0;
|
||||
@ -130,8 +131,10 @@ static inline int32_t RTC_NO_SANITIZE("signed-integer-overflow")
|
||||
// - frame_length [i] : Number of input samples
|
||||
//
|
||||
// - returns : the VAD decision (0 - noise, 1 - speech).
|
||||
static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
int16_t total_power, size_t frame_length) {
|
||||
static int16_t GmmProbability(VadInstT* self,
|
||||
int16_t* features,
|
||||
int16_t total_power,
|
||||
size_t frame_length) {
|
||||
int channel, k;
|
||||
int16_t feature_minimum;
|
||||
int16_t h0, h1;
|
||||
@ -145,8 +148,8 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
int16_t delt, ndelt;
|
||||
int16_t maxspe, maxmu;
|
||||
int16_t deltaN[kTableSize], deltaS[kTableSize];
|
||||
int16_t ngprvec[kTableSize] = { 0 }; // Conditional probability = 0.
|
||||
int16_t sgprvec[kTableSize] = { 0 }; // Conditional probability = 0.
|
||||
int16_t ngprvec[kTableSize] = {0}; // Conditional probability = 0.
|
||||
int16_t sgprvec[kTableSize] = {0}; // Conditional probability = 0.
|
||||
int32_t h0_test, h1_test;
|
||||
int32_t tmp1_s32, tmp2_s32;
|
||||
int32_t sum_log_likelihood_ratios = 0;
|
||||
@ -194,19 +197,17 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
gaussian = channel + k * kNumChannels;
|
||||
// Probability under H0, that is, probability of frame being noise.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
|
||||
self->noise_means[gaussian],
|
||||
self->noise_stds[gaussian],
|
||||
&deltaN[gaussian]);
|
||||
tmp1_s32 = WebRtcVad_GaussianProbability(
|
||||
features[channel], self->noise_means[gaussian],
|
||||
self->noise_stds[gaussian], &deltaN[gaussian]);
|
||||
noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
|
||||
h0_test += noise_probability[k]; // Q27
|
||||
|
||||
// Probability under H1, that is, probability of frame being speech.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
|
||||
self->speech_means[gaussian],
|
||||
self->speech_stds[gaussian],
|
||||
&deltaS[gaussian]);
|
||||
tmp1_s32 = WebRtcVad_GaussianProbability(
|
||||
features[channel], self->speech_means[gaussian],
|
||||
self->speech_stds[gaussian], &deltaS[gaussian]);
|
||||
speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
|
||||
h1_test += speech_probability[k]; // Q27
|
||||
}
|
||||
@ -237,7 +238,7 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
// Update `sum_log_likelihood_ratios` with spectrum weighting. This is
|
||||
// used for the global VAD decision.
|
||||
sum_log_likelihood_ratios +=
|
||||
(int32_t) (log_likelihood_ratio * kSpectrumWeight[channel]);
|
||||
(int32_t)(log_likelihood_ratio * kSpectrumWeight[channel]);
|
||||
|
||||
// Local VAD decision.
|
||||
if ((log_likelihood_ratio * 4) > individualTest) {
|
||||
@ -247,12 +248,12 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
// TODO(bjornv): The conditional probabilities below are applied on the
|
||||
// hard coded number of Gaussians set to two. Find a way to generalize.
|
||||
// Calculate local noise probabilities used later when updating the GMM.
|
||||
h0 = (int16_t) (h0_test >> 12); // Q15
|
||||
h0 = (int16_t)(h0_test >> 12); // Q15
|
||||
if (h0 > 0) {
|
||||
// High probability of noise. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM.
|
||||
tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2; // Q29
|
||||
ngprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h0); // Q14
|
||||
tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2; // Q29
|
||||
ngprvec[channel] = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, h0); // Q14
|
||||
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
|
||||
} else {
|
||||
// Low noise probability. Assign conditional probability 1 to the first
|
||||
@ -261,12 +262,12 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
}
|
||||
|
||||
// Calculate local speech probabilities used later when updating the GMM.
|
||||
h1 = (int16_t) (h1_test >> 12); // Q15
|
||||
h1 = (int16_t)(h1_test >> 12); // Q15
|
||||
if (h1 > 0) {
|
||||
// High probability of speech. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
|
||||
tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2; // Q29
|
||||
sgprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h1); // Q14
|
||||
tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2; // Q29
|
||||
sgprvec[channel] = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, h1); // Q14
|
||||
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
|
||||
}
|
||||
}
|
||||
@ -277,14 +278,13 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
// Update the model parameters.
|
||||
maxspe = 12800;
|
||||
for (channel = 0; channel < kNumChannels; channel++) {
|
||||
|
||||
// Get minimum value in past which is used for long term correction in Q4.
|
||||
feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);
|
||||
|
||||
// Compute the "global" mean, that is the sum of the two means weighted.
|
||||
noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
|
||||
&kNoiseDataWeights[channel]);
|
||||
tmp1_s16 = (int16_t) (noise_global_mean >> 6); // Q8
|
||||
tmp1_s16 = (int16_t)(noise_global_mean >> 6); // Q8
|
||||
|
||||
for (k = 0; k < kNumGaussians; k++) {
|
||||
gaussian = channel + k * kNumChannels;
|
||||
@ -314,11 +314,11 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
nmk3 = nmk2 + (int16_t)((ndelt * kBackEta) >> 9);
|
||||
|
||||
// Control that the noise mean does not drift to much.
|
||||
tmp_s16 = (int16_t) ((k + 5) << 7);
|
||||
tmp_s16 = (int16_t)((k + 5) << 7);
|
||||
if (nmk3 < tmp_s16) {
|
||||
nmk3 = tmp_s16;
|
||||
}
|
||||
tmp_s16 = (int16_t) ((72 + k - channel) << 7);
|
||||
tmp_s16 = (int16_t)((72 + k - channel) << 7);
|
||||
if (nmk3 > tmp_s16) {
|
||||
nmk3 = tmp_s16;
|
||||
}
|
||||
@ -362,9 +362,9 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
|
||||
// 0.1 * Q20 / Q7 = Q13.
|
||||
if (tmp2_s32 > 0) {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
|
||||
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
|
||||
} else {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
|
||||
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
|
||||
tmp_s16 = -tmp_s16;
|
||||
}
|
||||
// Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
|
||||
@ -394,12 +394,12 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
|
||||
// Q20 / Q7 = Q13.
|
||||
if (tmp1_s32 > 0) {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, nsk);
|
||||
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, nsk);
|
||||
} else {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
|
||||
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
|
||||
tmp_s16 = -tmp_s16;
|
||||
}
|
||||
tmp_s16 += 32; // Rounding
|
||||
tmp_s16 += 32; // Rounding
|
||||
nsk += tmp_s16 >> 6; // Q13 >> 6 = Q7.
|
||||
if (nsk < kMinStd) {
|
||||
nsk = kMinStd;
|
||||
@ -419,8 +419,8 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
|
||||
// `diff` = "global" speech mean - "global" noise mean.
|
||||
// (Q14 >> 9) - (Q14 >> 9) = Q5.
|
||||
diff = (int16_t) (speech_global_mean >> 9) -
|
||||
(int16_t) (noise_global_mean >> 9);
|
||||
diff = (int16_t)(speech_global_mean >> 9) -
|
||||
(int16_t)(noise_global_mean >> 9);
|
||||
if (diff < kMinimumDifference[channel]) {
|
||||
tmp_s16 = kMinimumDifference[channel] - diff;
|
||||
|
||||
@ -432,21 +432,21 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
// Move Gaussian means for speech model by `tmp1_s16` and update
|
||||
// `speech_global_mean`. Note that `self->speech_means[channel]` is
|
||||
// changed after the call.
|
||||
speech_global_mean = WeightedAverage(&self->speech_means[channel],
|
||||
tmp1_s16,
|
||||
&kSpeechDataWeights[channel]);
|
||||
speech_global_mean =
|
||||
WeightedAverage(&self->speech_means[channel], tmp1_s16,
|
||||
&kSpeechDataWeights[channel]);
|
||||
|
||||
// Move Gaussian means for noise model by -`tmp2_s16` and update
|
||||
// `noise_global_mean`. Note that `self->noise_means[channel]` is
|
||||
// changed after the call.
|
||||
noise_global_mean = WeightedAverage(&self->noise_means[channel],
|
||||
-tmp2_s16,
|
||||
&kNoiseDataWeights[channel]);
|
||||
noise_global_mean =
|
||||
WeightedAverage(&self->noise_means[channel], -tmp2_s16,
|
||||
&kNoiseDataWeights[channel]);
|
||||
}
|
||||
|
||||
// Control that the speech & noise means do not drift to much.
|
||||
maxspe = kMaximumSpeech[channel];
|
||||
tmp2_s16 = (int16_t) (speech_global_mean >> 7);
|
||||
tmp2_s16 = (int16_t)(speech_global_mean >> 7);
|
||||
if (tmp2_s16 > maxspe) {
|
||||
// Upper limit of speech model.
|
||||
tmp2_s16 -= maxspe;
|
||||
@ -456,7 +456,7 @@ static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
}
|
||||
}
|
||||
|
||||
tmp2_s16 = (int16_t) (noise_global_mean >> 7);
|
||||
tmp2_s16 = (int16_t)(noise_global_mean >> 7);
|
||||
if (tmp2_s16 > kMaximumNoise[channel]) {
|
||||
tmp2_s16 -= kMaximumNoise[channel];
|
||||
|
||||
@ -555,10 +555,8 @@ int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2Q,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdQ,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdQ,
|
||||
sizeof(self->total));
|
||||
memcpy(self->individual, kLocalThresholdQ, sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdQ, sizeof(self->total));
|
||||
break;
|
||||
case 1:
|
||||
// Low bitrate mode.
|
||||
@ -566,10 +564,8 @@ int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2LBR,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdLBR,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdLBR,
|
||||
sizeof(self->total));
|
||||
memcpy(self->individual, kLocalThresholdLBR, sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdLBR, sizeof(self->total));
|
||||
break;
|
||||
case 2:
|
||||
// Aggressive mode.
|
||||
@ -577,10 +573,8 @@ int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2AGG,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdAGG,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdAGG,
|
||||
sizeof(self->total));
|
||||
memcpy(self->individual, kLocalThresholdAGG, sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdAGG, sizeof(self->total));
|
||||
break;
|
||||
case 3:
|
||||
// Very aggressive mode.
|
||||
@ -588,10 +582,8 @@ int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2VAG,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdVAG,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdVAG,
|
||||
sizeof(self->total));
|
||||
memcpy(self->individual, kLocalThresholdVAG, sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdVAG, sizeof(self->total));
|
||||
break;
|
||||
default:
|
||||
return_value = -1;
|
||||
@ -604,14 +596,15 @@ int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
|
||||
// Calculate VAD decision by first extracting feature values and then calculate
|
||||
// probability for both speech and background noise.
|
||||
|
||||
int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
int WebRtcVad_CalcVad48khz(VadInstT* inst,
|
||||
const int16_t* speech_frame,
|
||||
size_t frame_length) {
|
||||
int vad;
|
||||
size_t i;
|
||||
int16_t speech_nb[240]; // 30 ms in 8 kHz.
|
||||
// `tmp_mem` is a temporary memory used by resample function, length is
|
||||
// frame length in 10 ms (480 samples) + 256 extra.
|
||||
int32_t tmp_mem[480 + 256] = { 0 };
|
||||
int32_t tmp_mem[480 + 256] = {0};
|
||||
const size_t kFrameLen10ms48khz = 480;
|
||||
const size_t kFrameLen10ms8khz = 80;
|
||||
size_t num_10ms_frames = frame_length / kFrameLen10ms48khz;
|
||||
@ -619,8 +612,7 @@ int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
for (i = 0; i < num_10ms_frames; i++) {
|
||||
WebRtcSpl_Resample48khzTo8khz(speech_frame,
|
||||
&speech_nb[i * kFrameLen10ms8khz],
|
||||
&inst->state_48_to_8,
|
||||
tmp_mem);
|
||||
&inst->state_48_to_8, tmp_mem);
|
||||
}
|
||||
|
||||
// Do VAD on an 8 kHz signal
|
||||
@ -629,57 +621,57 @@ int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
return vad;
|
||||
}
|
||||
|
||||
int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length)
|
||||
{
|
||||
size_t len;
|
||||
int vad;
|
||||
int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
|
||||
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
|
||||
int WebRtcVad_CalcVad32khz(VadInstT* inst,
|
||||
const int16_t* speech_frame,
|
||||
size_t frame_length) {
|
||||
size_t len;
|
||||
int vad;
|
||||
int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
|
||||
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
|
||||
|
||||
// Downsample signal 32->16->8 before doing VAD
|
||||
WebRtcVad_Downsampling(speech_frame, speechWB,
|
||||
&(inst->downsampling_filter_states[2]), frame_length);
|
||||
len = frame_length / 2;
|
||||
|
||||
// Downsample signal 32->16->8 before doing VAD
|
||||
WebRtcVad_Downsampling(speech_frame, speechWB, &(inst->downsampling_filter_states[2]),
|
||||
frame_length);
|
||||
len = frame_length / 2;
|
||||
WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states,
|
||||
len);
|
||||
len /= 2;
|
||||
|
||||
WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states, len);
|
||||
len /= 2;
|
||||
// Do VAD on an 8 kHz signal
|
||||
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
|
||||
|
||||
// Do VAD on an 8 kHz signal
|
||||
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
|
||||
|
||||
return vad;
|
||||
return vad;
|
||||
}
|
||||
|
||||
int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length)
|
||||
{
|
||||
size_t len;
|
||||
int vad;
|
||||
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
|
||||
int WebRtcVad_CalcVad16khz(VadInstT* inst,
|
||||
const int16_t* speech_frame,
|
||||
size_t frame_length) {
|
||||
size_t len;
|
||||
int vad;
|
||||
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
|
||||
|
||||
// Wideband: Downsample signal before doing VAD
|
||||
WebRtcVad_Downsampling(speech_frame, speechNB, inst->downsampling_filter_states,
|
||||
frame_length);
|
||||
// Wideband: Downsample signal before doing VAD
|
||||
WebRtcVad_Downsampling(speech_frame, speechNB,
|
||||
inst->downsampling_filter_states, frame_length);
|
||||
|
||||
len = frame_length / 2;
|
||||
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
|
||||
len = frame_length / 2;
|
||||
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
|
||||
|
||||
return vad;
|
||||
return vad;
|
||||
}
|
||||
|
||||
int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length)
|
||||
{
|
||||
int16_t feature_vector[kNumChannels], total_power;
|
||||
int WebRtcVad_CalcVad8khz(VadInstT* inst,
|
||||
const int16_t* speech_frame,
|
||||
size_t frame_length) {
|
||||
int16_t feature_vector[kNumChannels], total_power;
|
||||
|
||||
// Get power in the bands
|
||||
total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
|
||||
feature_vector);
|
||||
// Get power in the bands
|
||||
total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
|
||||
feature_vector);
|
||||
|
||||
// Make a VAD
|
||||
inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
|
||||
// Make a VAD
|
||||
inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
|
||||
|
||||
return inst->vad;
|
||||
return inst->vad;
|
||||
}
|
||||
|
||||
@ -10,23 +10,23 @@
|
||||
|
||||
#include "common_audio/vad/vad_filterbank.h"
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
#include "common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "rtc_base/checks.h"
|
||||
|
||||
// Constants used in LogOfEnergy().
|
||||
static const int16_t kLogConst = 24660; // 160*log10(2) in Q9.
|
||||
static const int16_t kLogConst = 24660; // 160*log10(2) in Q9.
|
||||
static const int16_t kLogEnergyIntPart = 14336; // 14 in Q10
|
||||
|
||||
// Coefficients used by HighPassFilter, Q14.
|
||||
static const int16_t kHpZeroCoefs[3] = { 6631, -13262, 6631 };
|
||||
static const int16_t kHpPoleCoefs[3] = { 16384, -7756, 5620 };
|
||||
static const int16_t kHpZeroCoefs[3] = {6631, -13262, 6631};
|
||||
static const int16_t kHpPoleCoefs[3] = {16384, -7756, 5620};
|
||||
|
||||
// Allpass filter coefficients, upper and lower, in Q15.
|
||||
// Upper: 0.64, Lower: 0.17
|
||||
static const int16_t kAllPassCoefsQ15[2] = { 20972, 5571 };
|
||||
static const int16_t kAllPassCoefsQ15[2] = {20972, 5571};
|
||||
|
||||
// Adjustment for division with two in SplitFilter.
|
||||
static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 };
|
||||
static const int16_t kOffsetVector[6] = {368, 368, 272, 176, 176, 176};
|
||||
|
||||
// High pass filtering, with a cut-off frequency at 80 Hz, if the `data_in` is
|
||||
// sampled at 500 Hz.
|
||||
@ -36,14 +36,15 @@ static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 };
|
||||
// - filter_state [i/o] : State of the filter.
|
||||
// - data_out [o] : Output audio data in the frequency interval
|
||||
// 80 - 250 Hz.
|
||||
static void HighPassFilter(const int16_t* data_in, size_t data_length,
|
||||
int16_t* filter_state, int16_t* data_out) {
|
||||
static void HighPassFilter(const int16_t* data_in,
|
||||
size_t data_length,
|
||||
int16_t* filter_state,
|
||||
int16_t* data_out) {
|
||||
size_t i;
|
||||
const int16_t* in_ptr = data_in;
|
||||
int16_t* out_ptr = data_out;
|
||||
int32_t tmp32 = 0;
|
||||
|
||||
|
||||
// The sum of the absolute values of the impulse response:
|
||||
// The zero/pole-filter has a max amplification of a single sample of: 1.4546
|
||||
// Impulse response: 0.4047 -0.6179 -0.0266 0.1993 0.1035 -0.0194
|
||||
@ -64,7 +65,7 @@ static void HighPassFilter(const int16_t* data_in, size_t data_length,
|
||||
tmp32 -= kHpPoleCoefs[1] * filter_state[2];
|
||||
tmp32 -= kHpPoleCoefs[2] * filter_state[3];
|
||||
filter_state[3] = filter_state[2];
|
||||
filter_state[2] = (int16_t) (tmp32 >> 14);
|
||||
filter_state[2] = (int16_t)(tmp32 >> 14);
|
||||
*out_ptr++ = filter_state[2];
|
||||
}
|
||||
}
|
||||
@ -78,8 +79,10 @@ static void HighPassFilter(const int16_t* data_in, size_t data_length,
|
||||
// - filter_coefficient [i] : Given in Q15.
|
||||
// - filter_state [i/o] : State of the filter given in Q(-1).
|
||||
// - data_out [o] : Output audio signal given in Q(-1).
|
||||
static void AllPassFilter(const int16_t* data_in, size_t data_length,
|
||||
int16_t filter_coefficient, int16_t* filter_state,
|
||||
static void AllPassFilter(const int16_t* data_in,
|
||||
size_t data_length,
|
||||
int16_t filter_coefficient,
|
||||
int16_t* filter_state,
|
||||
int16_t* data_out) {
|
||||
// The filter can only cause overflow (in the w16 output variable)
|
||||
// if more than 4 consecutive input numbers are of maximum value and
|
||||
@ -90,18 +93,18 @@ static void AllPassFilter(const int16_t* data_in, size_t data_length,
|
||||
size_t i;
|
||||
int16_t tmp16 = 0;
|
||||
int32_t tmp32 = 0;
|
||||
int32_t state32 = ((int32_t) (*filter_state) * (1 << 16)); // Q15
|
||||
int32_t state32 = ((int32_t)(*filter_state) * (1 << 16)); // Q15
|
||||
|
||||
for (i = 0; i < data_length; i++) {
|
||||
tmp32 = state32 + filter_coefficient * *data_in;
|
||||
tmp16 = (int16_t) (tmp32 >> 16); // Q(-1)
|
||||
tmp16 = (int16_t)(tmp32 >> 16); // Q(-1)
|
||||
*data_out++ = tmp16;
|
||||
state32 = (*data_in * (1 << 14)) - filter_coefficient * tmp16; // Q14
|
||||
state32 *= 2; // Q15.
|
||||
state32 *= 2; // Q15.
|
||||
data_in += 2;
|
||||
}
|
||||
|
||||
*filter_state = (int16_t) (state32 >> 16); // Q(-1)
|
||||
*filter_state = (int16_t)(state32 >> 16); // Q(-1)
|
||||
}
|
||||
|
||||
// Splits `data_in` into `hp_data_out` and `lp_data_out` corresponding to
|
||||
@ -115,9 +118,12 @@ static void AllPassFilter(const int16_t* data_in, size_t data_length,
|
||||
// The length is `data_length` / 2.
|
||||
// - lp_data_out [o] : Output audio data of the lower half of the spectrum.
|
||||
// The length is `data_length` / 2.
|
||||
static void SplitFilter(const int16_t* data_in, size_t data_length,
|
||||
int16_t* upper_state, int16_t* lower_state,
|
||||
int16_t* hp_data_out, int16_t* lp_data_out) {
|
||||
static void SplitFilter(const int16_t* data_in,
|
||||
size_t data_length,
|
||||
int16_t* upper_state,
|
||||
int16_t* lower_state,
|
||||
int16_t* hp_data_out,
|
||||
int16_t* lp_data_out) {
|
||||
size_t i;
|
||||
size_t half_length = data_length >> 1; // Downsampling by 2.
|
||||
int16_t tmp_out;
|
||||
@ -149,8 +155,10 @@ static void SplitFilter(const int16_t* data_in, size_t data_length,
|
||||
// NOTE: `total_energy` is only updated if
|
||||
// `total_energy` <= `kMinEnergy`.
|
||||
// - log_energy [o] : 10 * log10("energy of `data_in`") given in Q4.
|
||||
static void LogOfEnergy(const int16_t* data_in, size_t data_length,
|
||||
int16_t offset, int16_t* total_energy,
|
||||
static void LogOfEnergy(const int16_t* data_in,
|
||||
size_t data_length,
|
||||
int16_t offset,
|
||||
int16_t* total_energy,
|
||||
int16_t* log_energy) {
|
||||
// `tot_rshifts` accumulates the number of right shifts performed on `energy`.
|
||||
int tot_rshifts = 0;
|
||||
@ -161,8 +169,8 @@ static void LogOfEnergy(const int16_t* data_in, size_t data_length,
|
||||
RTC_DCHECK(data_in);
|
||||
RTC_DCHECK_GT(data_length, 0);
|
||||
|
||||
energy = (uint32_t) WebRtcSpl_Energy((int16_t*) data_in, data_length,
|
||||
&tot_rshifts);
|
||||
energy =
|
||||
(uint32_t)WebRtcSpl_Energy((int16_t*)data_in, data_length, &tot_rshifts);
|
||||
|
||||
if (energy != 0) {
|
||||
// By construction, normalizing to 15 bits is equivalent with 17 leading
|
||||
@ -205,12 +213,12 @@ static void LogOfEnergy(const int16_t* data_in, size_t data_length,
|
||||
// Note that frac_Q15 = (`energy` & 0x00003FFF)
|
||||
|
||||
// Calculate and add the fractional part to `log2_energy`.
|
||||
log2_energy += (int16_t) ((energy & 0x00003FFF) >> 4);
|
||||
log2_energy += (int16_t)((energy & 0x00003FFF) >> 4);
|
||||
|
||||
// `kLogConst` is in Q9, `log2_energy` in Q10 and `tot_rshifts` in Q0.
|
||||
// Note that we in our derivation above have accounted for an output in Q4.
|
||||
*log_energy = (int16_t)(((kLogConst * log2_energy) >> 19) +
|
||||
((tot_rshifts * kLogConst) >> 9));
|
||||
((tot_rshifts * kLogConst) >> 9));
|
||||
|
||||
if (*log_energy < 0) {
|
||||
*log_energy = 0;
|
||||
@ -235,13 +243,15 @@ static void LogOfEnergy(const int16_t* data_in, size_t data_length,
|
||||
// right shifted `energy` will fit in an int16_t. In addition, adding the
|
||||
// value to `total_energy` is wrap around safe as long as
|
||||
// `kMinEnergy` < 8192.
|
||||
*total_energy += (int16_t) (energy >> -tot_rshifts); // Q0.
|
||||
*total_energy += (int16_t)(energy >> -tot_rshifts); // Q0.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
size_t data_length, int16_t* features) {
|
||||
int16_t WebRtcVad_CalculateFeatures(VadInstT* self,
|
||||
const int16_t* data_in,
|
||||
size_t data_length,
|
||||
int16_t* features) {
|
||||
int16_t total_energy = 0;
|
||||
// We expect `data_length` to be 80, 160 or 240 samples, which corresponds to
|
||||
// 10, 20 or 30 ms in 8 kHz. Therefore, the intermediate downsampled data will
|
||||
@ -256,8 +266,8 @@ int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
// Initialize variables for the first SplitFilter().
|
||||
int frequency_band = 0;
|
||||
const int16_t* in_ptr = data_in; // [0 - 4000] Hz.
|
||||
int16_t* hp_out_ptr = hp_120; // [2000 - 4000] Hz.
|
||||
int16_t* lp_out_ptr = lp_120; // [0 - 2000] Hz.
|
||||
int16_t* hp_out_ptr = hp_120; // [2000 - 4000] Hz.
|
||||
int16_t* lp_out_ptr = lp_120; // [0 - 2000] Hz.
|
||||
|
||||
RTC_DCHECK_LE(data_length, 240);
|
||||
RTC_DCHECK_LT(4, kNumChannels - 1); // Checking maximum `frequency_band`.
|
||||
@ -268,7 +278,7 @@ int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
|
||||
// For the upper band (2000 Hz - 4000 Hz) split at 3000 Hz and downsample.
|
||||
frequency_band = 1;
|
||||
in_ptr = hp_120; // [2000 - 4000] Hz.
|
||||
in_ptr = hp_120; // [2000 - 4000] Hz.
|
||||
hp_out_ptr = hp_60; // [3000 - 4000] Hz.
|
||||
lp_out_ptr = lp_60; // [2000 - 3000] Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
@ -284,9 +294,9 @@ int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
|
||||
// For the lower band (0 Hz - 2000 Hz) split at 1000 Hz and downsample.
|
||||
frequency_band = 2;
|
||||
in_ptr = lp_120; // [0 - 2000] Hz.
|
||||
hp_out_ptr = hp_60; // [1000 - 2000] Hz.
|
||||
lp_out_ptr = lp_60; // [0 - 1000] Hz.
|
||||
in_ptr = lp_120; // [0 - 2000] Hz.
|
||||
hp_out_ptr = hp_60; // [1000 - 2000] Hz.
|
||||
lp_out_ptr = lp_60; // [0 - 1000] Hz.
|
||||
length = half_data_length; // `data_length` / 2 <=> bandwidth = 2000 Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
|
||||
@ -297,7 +307,7 @@ int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
|
||||
// For the lower band (0 Hz - 1000 Hz) split at 500 Hz and downsample.
|
||||
frequency_band = 3;
|
||||
in_ptr = lp_60; // [0 - 1000] Hz.
|
||||
in_ptr = lp_60; // [0 - 1000] Hz.
|
||||
hp_out_ptr = hp_120; // [500 - 1000] Hz.
|
||||
lp_out_ptr = lp_120; // [0 - 500] Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
@ -309,7 +319,7 @@ int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
|
||||
// For the lower band (0 Hz - 500 Hz) split at 250 Hz and downsample.
|
||||
frequency_band = 4;
|
||||
in_ptr = lp_120; // [0 - 500] Hz.
|
||||
in_ptr = lp_120; // [0 - 500] Hz.
|
||||
hp_out_ptr = hp_60; // [250 - 500] Hz.
|
||||
lp_out_ptr = lp_60; // [0 - 250] Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
|
||||
@ -36,8 +36,8 @@ int32_t WebRtcVad_GaussianProbability(int16_t input,
|
||||
// Calculate `inv_std` = 1 / s, in Q10.
|
||||
// 131072 = 1 in Q17, and (`std` >> 1) is for rounding instead of truncation.
|
||||
// Q-domain: Q17 / Q7 = Q10.
|
||||
tmp32 = (int32_t) 131072 + (int32_t) (std >> 1);
|
||||
inv_std = (int16_t) WebRtcSpl_DivW32W16(tmp32, std);
|
||||
tmp32 = (int32_t)131072 + (int32_t)(std >> 1);
|
||||
inv_std = (int16_t)WebRtcSpl_DivW32W16(tmp32, std);
|
||||
|
||||
// Calculate `inv_std2` = 1 / s^2, in Q14.
|
||||
tmp16 = (inv_std >> 2); // Q10 -> Q8.
|
||||
|
||||
@ -10,15 +10,15 @@
|
||||
|
||||
#include "common_audio/vad/vad_sp.h"
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
#include "common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "common_audio/vad/vad_core.h"
|
||||
#include "rtc_base/checks.h"
|
||||
|
||||
// Allpass filter coefficients, upper and lower, in Q13.
|
||||
// Upper: 0.64, Lower: 0.17.
|
||||
static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 }; // Q13.
|
||||
static const int16_t kSmoothingDown = 6553; // 0.2 in Q15.
|
||||
static const int16_t kSmoothingUp = 32439; // 0.99 in Q15.
|
||||
static const int16_t kAllPassCoefsQ13[2] = {5243, 1392}; // Q13.
|
||||
static const int16_t kSmoothingDown = 6553; // 0.2 in Q15.
|
||||
static const int16_t kSmoothingUp = 32439; // 0.99 in Q15.
|
||||
|
||||
// TODO(bjornv): Move this function to vad_filterbank.c.
|
||||
// Downsampling filter based on splitting filter and allpass functions.
|
||||
@ -36,14 +36,14 @@ void WebRtcVad_Downsampling(const int16_t* signal_in,
|
||||
// Filter coefficients in Q13, filter state in Q0.
|
||||
for (n = 0; n < half_length; n++) {
|
||||
// All-pass filtering upper branch.
|
||||
tmp16_1 = (int16_t) ((tmp32_1 >> 1) +
|
||||
((kAllPassCoefsQ13[0] * *signal_in) >> 14));
|
||||
tmp16_1 =
|
||||
(int16_t)((tmp32_1 >> 1) + ((kAllPassCoefsQ13[0] * *signal_in) >> 14));
|
||||
*signal_out = tmp16_1;
|
||||
tmp32_1 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[0] * tmp16_1) >> 12);
|
||||
|
||||
// All-pass filtering lower branch.
|
||||
tmp16_2 = (int16_t) ((tmp32_2 >> 1) +
|
||||
((kAllPassCoefsQ13[1] * *signal_in) >> 14));
|
||||
tmp16_2 =
|
||||
(int16_t)((tmp32_2 >> 1) + ((kAllPassCoefsQ13[1] * *signal_in) >> 14));
|
||||
*signal_out++ += tmp16_2;
|
||||
tmp32_2 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[1] * tmp16_2) >> 12);
|
||||
}
|
||||
@ -170,7 +170,7 @@ int16_t WebRtcVad_FindMinimum(VadInstT* self,
|
||||
tmp32 = (alpha + 1) * self->mean_value[channel];
|
||||
tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median;
|
||||
tmp32 += 16384;
|
||||
self->mean_value[channel] = (int16_t) (tmp32 >> 15);
|
||||
self->mean_value[channel] = (int16_t)(tmp32 >> 15);
|
||||
|
||||
return self->mean_value[channel];
|
||||
}
|
||||
|
||||
@ -17,7 +17,7 @@
|
||||
#include "common_audio/vad/vad_core.h"
|
||||
|
||||
static const int kInitCheck = 42;
|
||||
static const int kValidRates[] = { 8000, 16000, 32000, 48000 };
|
||||
static const int kValidRates[] = {8000, 16000, 32000, 48000};
|
||||
static const size_t kRatesSize = sizeof(kValidRates) / sizeof(*kValidRates);
|
||||
static const int kMaxFrameLengthMs = 30;
|
||||
|
||||
@ -36,12 +36,12 @@ void WebRtcVad_Free(VadInst* handle) {
|
||||
// TODO(bjornv): Move WebRtcVad_InitCore() code here.
|
||||
int WebRtcVad_Init(VadInst* handle) {
|
||||
// Initialize the core VAD component.
|
||||
return WebRtcVad_InitCore((VadInstT*) handle);
|
||||
return WebRtcVad_InitCore((VadInstT*)handle);
|
||||
}
|
||||
|
||||
// TODO(bjornv): Move WebRtcVad_set_mode_core() code here.
|
||||
int WebRtcVad_set_mode(VadInst* handle, int mode) {
|
||||
VadInstT* self = (VadInstT*) handle;
|
||||
VadInstT* self = (VadInstT*)handle;
|
||||
|
||||
if (handle == NULL) {
|
||||
return -1;
|
||||
@ -53,10 +53,12 @@ int WebRtcVad_set_mode(VadInst* handle, int mode) {
|
||||
return WebRtcVad_set_mode_core(self, mode);
|
||||
}
|
||||
|
||||
int WebRtcVad_Process(VadInst* handle, int fs, const int16_t* audio_frame,
|
||||
int WebRtcVad_Process(VadInst* handle,
|
||||
int fs,
|
||||
const int16_t* audio_frame,
|
||||
size_t frame_length) {
|
||||
int vad = -1;
|
||||
VadInstT* self = (VadInstT*) handle;
|
||||
VadInstT* self = (VadInstT*)handle;
|
||||
|
||||
if (handle == NULL) {
|
||||
return -1;
|
||||
@ -73,7 +75,7 @@ int WebRtcVad_Process(VadInst* handle, int fs, const int16_t* audio_frame,
|
||||
}
|
||||
|
||||
if (fs == 48000) {
|
||||
vad = WebRtcVad_CalcVad48khz(self, audio_frame, frame_length);
|
||||
vad = WebRtcVad_CalcVad48khz(self, audio_frame, frame_length);
|
||||
} else if (fs == 32000) {
|
||||
vad = WebRtcVad_CalcVad32khz(self, audio_frame, frame_length);
|
||||
} else if (fs == 16000) {
|
||||
@ -99,7 +101,7 @@ int WebRtcVad_ValidRateAndFrameLength(int rate, size_t frame_length) {
|
||||
for (i = 0; i < kRatesSize; i++) {
|
||||
if (kValidRates[i] == rate) {
|
||||
for (valid_length_ms = 10; valid_length_ms <= kMaxFrameLengthMs;
|
||||
valid_length_ms += 10) {
|
||||
valid_length_ms += 10) {
|
||||
valid_length = (size_t)(kValidRates[i] / 1000 * valid_length_ms);
|
||||
if (frame_length == valid_length) {
|
||||
return_value = 0;
|
||||
|
||||
@ -8,10 +8,11 @@
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "modules/audio_coding/codecs/g711/g711_interface.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "modules/third_party/g711/g711.h"
|
||||
#include "modules/audio_coding/codecs/g711/g711_interface.h"
|
||||
|
||||
size_t WebRtcG711_EncodeA(const int16_t* speechIn,
|
||||
size_t len,
|
||||
|
||||
@ -8,60 +8,56 @@
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "modules/audio_coding/codecs/g722/g722_interface.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "modules/audio_coding/codecs/g722/g722_interface.h"
|
||||
#include "modules/third_party/g722/g722_enc_dec.h"
|
||||
|
||||
int16_t WebRtcG722_CreateEncoder(G722EncInst **G722enc_inst)
|
||||
{
|
||||
*G722enc_inst=(G722EncInst*)malloc(sizeof(G722EncoderState));
|
||||
if (*G722enc_inst!=NULL) {
|
||||
return(0);
|
||||
} else {
|
||||
return(-1);
|
||||
}
|
||||
int16_t WebRtcG722_CreateEncoder(G722EncInst** G722enc_inst) {
|
||||
*G722enc_inst = (G722EncInst*)malloc(sizeof(G722EncoderState));
|
||||
if (*G722enc_inst != NULL) {
|
||||
return (0);
|
||||
} else {
|
||||
return (-1);
|
||||
}
|
||||
}
|
||||
|
||||
int16_t WebRtcG722_EncoderInit(G722EncInst *G722enc_inst)
|
||||
{
|
||||
// Create and/or reset the G.722 encoder
|
||||
// Bitrate 64 kbps and wideband mode (2)
|
||||
G722enc_inst = (G722EncInst *) WebRtc_g722_encode_init(
|
||||
(G722EncoderState*) G722enc_inst, 64000, 2);
|
||||
if (G722enc_inst == NULL) {
|
||||
return -1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
int16_t WebRtcG722_EncoderInit(G722EncInst* G722enc_inst) {
|
||||
// Create and/or reset the G.722 encoder
|
||||
// Bitrate 64 kbps and wideband mode (2)
|
||||
G722enc_inst = (G722EncInst*)WebRtc_g722_encode_init(
|
||||
(G722EncoderState*)G722enc_inst, 64000, 2);
|
||||
if (G722enc_inst == NULL) {
|
||||
return -1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
int WebRtcG722_FreeEncoder(G722EncInst *G722enc_inst)
|
||||
{
|
||||
// Free encoder memory
|
||||
return WebRtc_g722_encode_release((G722EncoderState*) G722enc_inst);
|
||||
int WebRtcG722_FreeEncoder(G722EncInst* G722enc_inst) {
|
||||
// Free encoder memory
|
||||
return WebRtc_g722_encode_release((G722EncoderState*)G722enc_inst);
|
||||
}
|
||||
|
||||
size_t WebRtcG722_Encode(G722EncInst *G722enc_inst,
|
||||
size_t WebRtcG722_Encode(G722EncInst* G722enc_inst,
|
||||
const int16_t* speechIn,
|
||||
size_t len,
|
||||
uint8_t* encoded)
|
||||
{
|
||||
unsigned char *codechar = (unsigned char*) encoded;
|
||||
// Encode the input speech vector
|
||||
return WebRtc_g722_encode((G722EncoderState*) G722enc_inst, codechar,
|
||||
speechIn, len);
|
||||
uint8_t* encoded) {
|
||||
unsigned char* codechar = (unsigned char*)encoded;
|
||||
// Encode the input speech vector
|
||||
return WebRtc_g722_encode((G722EncoderState*)G722enc_inst, codechar, speechIn,
|
||||
len);
|
||||
}
|
||||
|
||||
int16_t WebRtcG722_CreateDecoder(G722DecInst **G722dec_inst)
|
||||
{
|
||||
*G722dec_inst=(G722DecInst*)malloc(sizeof(G722DecoderState));
|
||||
if (*G722dec_inst!=NULL) {
|
||||
return(0);
|
||||
} else {
|
||||
return(-1);
|
||||
}
|
||||
int16_t WebRtcG722_CreateDecoder(G722DecInst** G722dec_inst) {
|
||||
*G722dec_inst = (G722DecInst*)malloc(sizeof(G722DecoderState));
|
||||
if (*G722dec_inst != NULL) {
|
||||
return (0);
|
||||
} else {
|
||||
return (-1);
|
||||
}
|
||||
}
|
||||
|
||||
void WebRtcG722_DecoderInit(G722DecInst* inst) {
|
||||
@ -70,35 +66,29 @@ void WebRtcG722_DecoderInit(G722DecInst* inst) {
|
||||
WebRtc_g722_decode_init((G722DecoderState*)inst, 64000, 2);
|
||||
}
|
||||
|
||||
int WebRtcG722_FreeDecoder(G722DecInst *G722dec_inst)
|
||||
{
|
||||
// Free encoder memory
|
||||
return WebRtc_g722_decode_release((G722DecoderState*) G722dec_inst);
|
||||
int WebRtcG722_FreeDecoder(G722DecInst* G722dec_inst) {
|
||||
// Free encoder memory
|
||||
return WebRtc_g722_decode_release((G722DecoderState*)G722dec_inst);
|
||||
}
|
||||
|
||||
size_t WebRtcG722_Decode(G722DecInst *G722dec_inst,
|
||||
const uint8_t *encoded,
|
||||
size_t WebRtcG722_Decode(G722DecInst* G722dec_inst,
|
||||
const uint8_t* encoded,
|
||||
size_t len,
|
||||
int16_t *decoded,
|
||||
int16_t *speechType)
|
||||
{
|
||||
// Decode the G.722 encoder stream
|
||||
*speechType=G722_WEBRTC_SPEECH;
|
||||
return WebRtc_g722_decode((G722DecoderState*) G722dec_inst, decoded,
|
||||
encoded, len);
|
||||
int16_t* decoded,
|
||||
int16_t* speechType) {
|
||||
// Decode the G.722 encoder stream
|
||||
*speechType = G722_WEBRTC_SPEECH;
|
||||
return WebRtc_g722_decode((G722DecoderState*)G722dec_inst, decoded, encoded,
|
||||
len);
|
||||
}
|
||||
|
||||
int16_t WebRtcG722_Version(char *versionStr, short len)
|
||||
{
|
||||
// Get version string
|
||||
char version[30] = "2.0.0\n";
|
||||
if (strlen(version) < (unsigned int)len)
|
||||
{
|
||||
strcpy(versionStr, version);
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
int16_t WebRtcG722_Version(char* versionStr, short len) {
|
||||
// Get version string
|
||||
char version[30] = "2.0.0\n";
|
||||
if (strlen(version) < (unsigned int)len) {
|
||||
strcpy(versionStr, version);
|
||||
return 0;
|
||||
} else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
@ -14,8 +14,8 @@
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
|
||||
#include "modules/audio_coding/codecs/isac/main/source/isac_vad.h"
|
||||
#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
|
||||
|
||||
static void WebRtcIsac_AllPoleFilter(double* InOut,
|
||||
double* Coef,
|
||||
@ -27,26 +27,21 @@ static void WebRtcIsac_AllPoleFilter(double* InOut,
|
||||
size_t n;
|
||||
int k;
|
||||
|
||||
//if (fabs(Coef[0]-1.0)<0.001) {
|
||||
if ( (Coef[0] > 0.9999) && (Coef[0] < 1.0001) )
|
||||
{
|
||||
for(n = 0; n < lengthInOut; n++)
|
||||
{
|
||||
// if (fabs(Coef[0]-1.0)<0.001) {
|
||||
if ((Coef[0] > 0.9999) && (Coef[0] < 1.0001)) {
|
||||
for (n = 0; n < lengthInOut; n++) {
|
||||
sum = Coef[1] * InOut[-1];
|
||||
for(k = 2; k <= orderCoef; k++){
|
||||
for (k = 2; k <= orderCoef; k++) {
|
||||
sum += Coef[k] * InOut[-k];
|
||||
}
|
||||
*InOut++ -= sum;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
scal = 1.0 / Coef[0];
|
||||
for(n=0;n<lengthInOut;n++)
|
||||
{
|
||||
for (n = 0; n < lengthInOut; n++) {
|
||||
*InOut *= scal;
|
||||
for(k=1;k<=orderCoef;k++){
|
||||
*InOut -= scal*Coef[k]*InOut[-k];
|
||||
for (k = 1; k <= orderCoef; k++) {
|
||||
*InOut -= scal * Coef[k] * InOut[-k];
|
||||
}
|
||||
InOut++;
|
||||
}
|
||||
@ -64,11 +59,10 @@ static void WebRtcIsac_AllZeroFilter(double* In,
|
||||
int k;
|
||||
double tmp;
|
||||
|
||||
for(n = 0; n < lengthInOut; n++)
|
||||
{
|
||||
for (n = 0; n < lengthInOut; n++) {
|
||||
tmp = In[0] * Coef[0];
|
||||
|
||||
for(k = 1; k <= orderCoef; k++){
|
||||
for (k = 1; k <= orderCoef; k++) {
|
||||
tmp += Coef[k] * In[-k];
|
||||
}
|
||||
|
||||
@ -83,21 +77,21 @@ static void WebRtcIsac_ZeroPoleFilter(double* In,
|
||||
size_t lengthInOut,
|
||||
int orderCoef,
|
||||
double* Out) {
|
||||
/* the state of the zero section is assumed to be in In[-1] to In[-orderCoef] */
|
||||
/* the state of the pole section is assumed to be in Out[-1] to Out[-orderCoef] */
|
||||
/* the state of the zero section is assumed to be in In[-1] to In[-orderCoef]
|
||||
*/
|
||||
/* the state of the pole section is assumed to be in Out[-1] to
|
||||
* Out[-orderCoef] */
|
||||
|
||||
WebRtcIsac_AllZeroFilter(In,ZeroCoef,lengthInOut,orderCoef,Out);
|
||||
WebRtcIsac_AllPoleFilter(Out,PoleCoef,lengthInOut,orderCoef);
|
||||
WebRtcIsac_AllZeroFilter(In, ZeroCoef, lengthInOut, orderCoef, Out);
|
||||
WebRtcIsac_AllPoleFilter(Out, PoleCoef, lengthInOut, orderCoef);
|
||||
}
|
||||
|
||||
|
||||
void WebRtcIsac_AutoCorr(double* r, const double* x, size_t N, size_t order) {
|
||||
size_t lag, n;
|
||||
size_t lag, n;
|
||||
double sum, prod;
|
||||
const double *x_lag;
|
||||
const double* x_lag;
|
||||
|
||||
for (lag = 0; lag <= order; lag++)
|
||||
{
|
||||
for (lag = 0; lag <= order; lag++) {
|
||||
sum = 0.0f;
|
||||
x_lag = &x[lag];
|
||||
prod = x[0] * x_lag[0];
|
||||
@ -108,7 +102,6 @@ void WebRtcIsac_AutoCorr(double* r, const double* x, size_t N, size_t order) {
|
||||
sum += prod;
|
||||
r[lag] = sum;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void WebRtcIsac_BwExpand(double* out,
|
||||
@ -116,7 +109,7 @@ static void WebRtcIsac_BwExpand(double* out,
|
||||
double coef,
|
||||
size_t length) {
|
||||
size_t i;
|
||||
double chirp;
|
||||
double chirp;
|
||||
|
||||
chirp = coef;
|
||||
|
||||
@ -131,65 +124,68 @@ void WebRtcIsac_WeightingFilter(const double* in,
|
||||
double* weiout,
|
||||
double* whiout,
|
||||
WeightFiltstr* wfdata) {
|
||||
double tmpbuffer[PITCH_FRAME_LEN + PITCH_WLPCBUFLEN];
|
||||
double corr[PITCH_WLPCORDER+1], rc[PITCH_WLPCORDER+1];
|
||||
double apol[PITCH_WLPCORDER+1], apolr[PITCH_WLPCORDER+1];
|
||||
double rho=0.9, *inp, *dp, *dp2;
|
||||
double whoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
|
||||
double weoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
|
||||
double *weo, *who, opol[PITCH_WLPCORDER+1], ext[PITCH_WLPCWINLEN];
|
||||
int k, n, endpos, start;
|
||||
double tmpbuffer[PITCH_FRAME_LEN + PITCH_WLPCBUFLEN];
|
||||
double corr[PITCH_WLPCORDER + 1], rc[PITCH_WLPCORDER + 1];
|
||||
double apol[PITCH_WLPCORDER + 1], apolr[PITCH_WLPCORDER + 1];
|
||||
double rho = 0.9, *inp, *dp, *dp2;
|
||||
double whoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
|
||||
double weoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
|
||||
double *weo, *who, opol[PITCH_WLPCORDER + 1], ext[PITCH_WLPCWINLEN];
|
||||
int k, n, endpos, start;
|
||||
|
||||
/* Set up buffer and states */
|
||||
memcpy(tmpbuffer, wfdata->buffer, sizeof(double) * PITCH_WLPCBUFLEN);
|
||||
memcpy(tmpbuffer+PITCH_WLPCBUFLEN, in, sizeof(double) * PITCH_FRAME_LEN);
|
||||
memcpy(wfdata->buffer, tmpbuffer+PITCH_FRAME_LEN, sizeof(double) * PITCH_WLPCBUFLEN);
|
||||
memcpy(tmpbuffer + PITCH_WLPCBUFLEN, in, sizeof(double) * PITCH_FRAME_LEN);
|
||||
memcpy(wfdata->buffer, tmpbuffer + PITCH_FRAME_LEN,
|
||||
sizeof(double) * PITCH_WLPCBUFLEN);
|
||||
|
||||
dp=weoutbuf;
|
||||
dp2=whoutbuf;
|
||||
for (k=0;k<PITCH_WLPCORDER;k++) {
|
||||
dp = weoutbuf;
|
||||
dp2 = whoutbuf;
|
||||
for (k = 0; k < PITCH_WLPCORDER; k++) {
|
||||
*dp++ = wfdata->weostate[k];
|
||||
*dp2++ = wfdata->whostate[k];
|
||||
opol[k]=0.0;
|
||||
opol[k] = 0.0;
|
||||
}
|
||||
opol[0]=1.0;
|
||||
opol[PITCH_WLPCORDER]=0.0;
|
||||
weo=dp;
|
||||
who=dp2;
|
||||
opol[0] = 1.0;
|
||||
opol[PITCH_WLPCORDER] = 0.0;
|
||||
weo = dp;
|
||||
who = dp2;
|
||||
|
||||
endpos=PITCH_WLPCBUFLEN + PITCH_SUBFRAME_LEN;
|
||||
inp=tmpbuffer + PITCH_WLPCBUFLEN;
|
||||
endpos = PITCH_WLPCBUFLEN + PITCH_SUBFRAME_LEN;
|
||||
inp = tmpbuffer + PITCH_WLPCBUFLEN;
|
||||
|
||||
for (n=0; n<PITCH_SUBFRAMES; n++) {
|
||||
for (n = 0; n < PITCH_SUBFRAMES; n++) {
|
||||
/* Windowing */
|
||||
start=endpos-PITCH_WLPCWINLEN;
|
||||
for (k=0; k<PITCH_WLPCWINLEN; k++) {
|
||||
ext[k]=wfdata->window[k]*tmpbuffer[start+k];
|
||||
start = endpos - PITCH_WLPCWINLEN;
|
||||
for (k = 0; k < PITCH_WLPCWINLEN; k++) {
|
||||
ext[k] = wfdata->window[k] * tmpbuffer[start + k];
|
||||
}
|
||||
|
||||
/* Get LPC polynomial */
|
||||
WebRtcIsac_AutoCorr(corr, ext, PITCH_WLPCWINLEN, PITCH_WLPCORDER);
|
||||
corr[0]=1.01*corr[0]+1.0; /* White noise correction */
|
||||
corr[0] = 1.01 * corr[0] + 1.0; /* White noise correction */
|
||||
WebRtcIsac_LevDurb(apol, rc, corr, PITCH_WLPCORDER);
|
||||
WebRtcIsac_BwExpand(apolr, apol, rho, PITCH_WLPCORDER+1);
|
||||
WebRtcIsac_BwExpand(apolr, apol, rho, PITCH_WLPCORDER + 1);
|
||||
|
||||
/* Filtering */
|
||||
WebRtcIsac_ZeroPoleFilter(inp, apol, apolr, PITCH_SUBFRAME_LEN, PITCH_WLPCORDER, weo);
|
||||
WebRtcIsac_ZeroPoleFilter(inp, apolr, opol, PITCH_SUBFRAME_LEN, PITCH_WLPCORDER, who);
|
||||
WebRtcIsac_ZeroPoleFilter(inp, apol, apolr, PITCH_SUBFRAME_LEN,
|
||||
PITCH_WLPCORDER, weo);
|
||||
WebRtcIsac_ZeroPoleFilter(inp, apolr, opol, PITCH_SUBFRAME_LEN,
|
||||
PITCH_WLPCORDER, who);
|
||||
|
||||
inp+=PITCH_SUBFRAME_LEN;
|
||||
endpos+=PITCH_SUBFRAME_LEN;
|
||||
weo+=PITCH_SUBFRAME_LEN;
|
||||
who+=PITCH_SUBFRAME_LEN;
|
||||
inp += PITCH_SUBFRAME_LEN;
|
||||
endpos += PITCH_SUBFRAME_LEN;
|
||||
weo += PITCH_SUBFRAME_LEN;
|
||||
who += PITCH_SUBFRAME_LEN;
|
||||
}
|
||||
|
||||
/* Export filter states */
|
||||
for (k=0;k<PITCH_WLPCORDER;k++) {
|
||||
wfdata->weostate[k]=weoutbuf[PITCH_FRAME_LEN+k];
|
||||
wfdata->whostate[k]=whoutbuf[PITCH_FRAME_LEN+k];
|
||||
for (k = 0; k < PITCH_WLPCORDER; k++) {
|
||||
wfdata->weostate[k] = weoutbuf[PITCH_FRAME_LEN + k];
|
||||
wfdata->whostate[k] = whoutbuf[PITCH_FRAME_LEN + k];
|
||||
}
|
||||
|
||||
/* Export output data */
|
||||
memcpy(weiout, weoutbuf+PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
|
||||
memcpy(whiout, whoutbuf+PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
|
||||
memcpy(weiout, weoutbuf + PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
|
||||
memcpy(whiout, whoutbuf + PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
|
||||
}
|
||||
|
||||
@ -21,12 +21,12 @@
|
||||
#include "modules/audio_coding/codecs/isac/main/source/pitch_filter.h"
|
||||
#include "rtc_base/system/ignore_warnings.h"
|
||||
|
||||
static const double kInterpolWin[8] = {-0.00067556028640, 0.02184247643159, -0.12203175715679, 0.60086484101160,
|
||||
0.60086484101160, -0.12203175715679, 0.02184247643159, -0.00067556028640};
|
||||
static const double kInterpolWin[8] = {
|
||||
-0.00067556028640, 0.02184247643159, -0.12203175715679, 0.60086484101160,
|
||||
0.60086484101160, -0.12203175715679, 0.02184247643159, -0.00067556028640};
|
||||
|
||||
/* interpolation filter */
|
||||
__inline static void IntrepolFilter(double *data_ptr, double *intrp)
|
||||
{
|
||||
__inline static void IntrepolFilter(double* data_ptr, double* intrp) {
|
||||
*intrp = kInterpolWin[0] * data_ptr[-3];
|
||||
*intrp += kInterpolWin[1] * data_ptr[-2];
|
||||
*intrp += kInterpolWin[2] * data_ptr[-1];
|
||||
@ -37,16 +37,17 @@ __inline static void IntrepolFilter(double *data_ptr, double *intrp)
|
||||
*intrp += kInterpolWin[7] * data_ptr[4];
|
||||
}
|
||||
|
||||
|
||||
/* 2D parabolic interpolation */
|
||||
/* probably some 0.5 factors can be eliminated, and the square-roots can be removed from the Cholesky fact. */
|
||||
__inline static void Intrpol2D(double T[3][3], double *x, double *y, double *peak_val)
|
||||
{
|
||||
/* probably some 0.5 factors can be eliminated, and the square-roots can be
|
||||
* removed from the Cholesky fact. */
|
||||
__inline static void Intrpol2D(double T[3][3],
|
||||
double* x,
|
||||
double* y,
|
||||
double* peak_val) {
|
||||
double c, b[2], A[2][2];
|
||||
double t1, t2, d;
|
||||
double delta1, delta2;
|
||||
|
||||
|
||||
// double T[3][3] = {{-1.25, -.25,-.25}, {-.25, .75, .75}, {-.25, .75, .75}};
|
||||
// should result in: delta1 = 0.5; delta2 = 0.0; peak_val = 1.0
|
||||
|
||||
@ -61,7 +62,7 @@ __inline static void Intrpol2D(double T[3][3], double *x, double *y, double *pea
|
||||
A[1][1] = -t2 - 0.5 * d;
|
||||
|
||||
/* deal with singularities or ill-conditioned cases */
|
||||
if ( (A[0][0] < 1e-7) || ((A[0][0] * A[1][1] - A[0][1] * A[0][1]) < 1e-7) ) {
|
||||
if ((A[0][0] < 1e-7) || ((A[0][0] * A[1][1] - A[0][1] * A[0][1]) < 1e-7)) {
|
||||
*peak_val = T[1][1];
|
||||
return;
|
||||
}
|
||||
@ -91,27 +92,25 @@ __inline static void Intrpol2D(double T[3][3], double *x, double *y, double *pea
|
||||
*y += delta2;
|
||||
}
|
||||
|
||||
|
||||
static void PCorr(const double *in, double *outcorr)
|
||||
{
|
||||
static void PCorr(const double* in, double* outcorr) {
|
||||
double sum, ysum, prod;
|
||||
const double *x, *inptr;
|
||||
int k, n;
|
||||
|
||||
//ysum = 1e-6; /* use this with float (i.s.o. double)! */
|
||||
// ysum = 1e-6; /* use this with float (i.s.o. double)! */
|
||||
ysum = 1e-13;
|
||||
sum = 0.0;
|
||||
x = in + PITCH_MAX_LAG/2 + 2;
|
||||
x = in + PITCH_MAX_LAG / 2 + 2;
|
||||
for (n = 0; n < PITCH_CORR_LEN2; n++) {
|
||||
ysum += in[n] * in[n];
|
||||
sum += x[n] * in[n];
|
||||
}
|
||||
|
||||
outcorr += PITCH_LAG_SPAN2 - 1; /* index of last element in array */
|
||||
outcorr += PITCH_LAG_SPAN2 - 1; /* index of last element in array */
|
||||
*outcorr = sum / sqrt(ysum);
|
||||
|
||||
for (k = 1; k < PITCH_LAG_SPAN2; k++) {
|
||||
ysum -= in[k-1] * in[k-1];
|
||||
ysum -= in[k - 1] * in[k - 1];
|
||||
ysum += in[PITCH_CORR_LEN2 + k - 1] * in[PITCH_CORR_LEN2 + k - 1];
|
||||
sum = 0.0;
|
||||
inptr = &in[k];
|
||||
@ -176,15 +175,15 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
const double old_gain,
|
||||
PitchAnalysisStruct* State,
|
||||
double* lags) {
|
||||
double buf_dec[PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2+2];
|
||||
double buf_dec[PITCH_CORR_LEN2 + PITCH_CORR_STEP2 + PITCH_MAX_LAG / 2 + 2];
|
||||
double ratio, log_lag, gain_bias;
|
||||
double bias;
|
||||
double corrvec1[PITCH_LAG_SPAN2];
|
||||
double corrvec2[PITCH_LAG_SPAN2];
|
||||
int m, k;
|
||||
// Allocating 10 extra entries at the begining of the CorrSurf
|
||||
double corrSurfBuff[10 + (2*PITCH_BW+3)*(PITCH_LAG_SPAN2+4)];
|
||||
double* CorrSurf[2*PITCH_BW+3];
|
||||
double corrSurfBuff[10 + (2 * PITCH_BW + 3) * (PITCH_LAG_SPAN2 + 4)];
|
||||
double* CorrSurf[2 * PITCH_BW + 3];
|
||||
double *CorrSurfPtr1, *CorrSurfPtr2;
|
||||
double LagWin[3] = {0.2, 0.5, 0.98};
|
||||
int ind1, ind2, peaks_ind, peak, max_ind;
|
||||
@ -198,30 +197,38 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
double T[3][3];
|
||||
int row;
|
||||
|
||||
for(k = 0; k < 2*PITCH_BW+3; k++)
|
||||
{
|
||||
CorrSurf[k] = &corrSurfBuff[10 + k * (PITCH_LAG_SPAN2+4)];
|
||||
for (k = 0; k < 2 * PITCH_BW + 3; k++) {
|
||||
CorrSurf[k] = &corrSurfBuff[10 + k * (PITCH_LAG_SPAN2 + 4)];
|
||||
}
|
||||
/* reset CorrSurf matrix */
|
||||
memset(corrSurfBuff, 0, sizeof(double) * (10 + (2*PITCH_BW+3) * (PITCH_LAG_SPAN2+4)));
|
||||
memset(corrSurfBuff, 0,
|
||||
sizeof(double) * (10 + (2 * PITCH_BW + 3) * (PITCH_LAG_SPAN2 + 4)));
|
||||
|
||||
//warnings -DH
|
||||
// warnings -DH
|
||||
max_ind = 0;
|
||||
peak = 0;
|
||||
|
||||
/* copy old values from state buffer */
|
||||
memcpy(buf_dec, State->dec_buffer, sizeof(double) * (PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2));
|
||||
memcpy(buf_dec, State->dec_buffer,
|
||||
sizeof(double) * (PITCH_CORR_LEN2 + PITCH_CORR_STEP2 +
|
||||
PITCH_MAX_LAG / 2 - PITCH_FRAME_LEN / 2 + 2));
|
||||
|
||||
/* decimation; put result after the old values */
|
||||
WebRtcIsac_DecimateAllpass(in, State->decimator_state, PITCH_FRAME_LEN,
|
||||
&buf_dec[PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2]);
|
||||
WebRtcIsac_DecimateAllpass(
|
||||
in, State->decimator_state, PITCH_FRAME_LEN,
|
||||
&buf_dec[PITCH_CORR_LEN2 + PITCH_CORR_STEP2 + PITCH_MAX_LAG / 2 -
|
||||
PITCH_FRAME_LEN / 2 + 2]);
|
||||
|
||||
/* low-pass filtering */
|
||||
for (k = PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2; k < PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2+2; k++)
|
||||
buf_dec[k] += 0.75 * buf_dec[k-1] - 0.25 * buf_dec[k-2];
|
||||
for (k = PITCH_CORR_LEN2 + PITCH_CORR_STEP2 + PITCH_MAX_LAG / 2 -
|
||||
PITCH_FRAME_LEN / 2 + 2;
|
||||
k < PITCH_CORR_LEN2 + PITCH_CORR_STEP2 + PITCH_MAX_LAG / 2 + 2; k++)
|
||||
buf_dec[k] += 0.75 * buf_dec[k - 1] - 0.25 * buf_dec[k - 2];
|
||||
|
||||
/* copy end part back into state buffer */
|
||||
memcpy(State->dec_buffer, buf_dec+PITCH_FRAME_LEN/2, sizeof(double) * (PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2));
|
||||
memcpy(State->dec_buffer, buf_dec + PITCH_FRAME_LEN / 2,
|
||||
sizeof(double) * (PITCH_CORR_LEN2 + PITCH_CORR_STEP2 +
|
||||
PITCH_MAX_LAG / 2 - PITCH_FRAME_LEN / 2 + 2));
|
||||
|
||||
/* compute correlation for first and second half of the frame */
|
||||
PCorr(buf_dec, corrvec1);
|
||||
@ -230,10 +237,10 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
/* bias towards pitch lag of previous frame */
|
||||
log_lag = log(0.5 * old_lag);
|
||||
gain_bias = 4.0 * old_gain * old_gain;
|
||||
if (gain_bias > 0.8) gain_bias = 0.8;
|
||||
for (k = 0; k < PITCH_LAG_SPAN2; k++)
|
||||
{
|
||||
ratio = log((double) (k + (PITCH_MIN_LAG/2-2))) - log_lag;
|
||||
if (gain_bias > 0.8)
|
||||
gain_bias = 0.8;
|
||||
for (k = 0; k < PITCH_LAG_SPAN2; k++) {
|
||||
ratio = log((double)(k + (PITCH_MIN_LAG / 2 - 2))) - log_lag;
|
||||
bias = 1.0 + gain_bias * exp(-5.0 * ratio * ratio);
|
||||
corrvec1[k] *= bias;
|
||||
}
|
||||
@ -243,8 +250,8 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
gain_tmp = LagWin[k];
|
||||
corrvec1[k] *= gain_tmp;
|
||||
corrvec2[k] *= gain_tmp;
|
||||
corrvec1[PITCH_LAG_SPAN2-1-k] *= gain_tmp;
|
||||
corrvec2[PITCH_LAG_SPAN2-1-k] *= gain_tmp;
|
||||
corrvec1[PITCH_LAG_SPAN2 - 1 - k] *= gain_tmp;
|
||||
corrvec2[PITCH_LAG_SPAN2 - 1 - k] *= gain_tmp;
|
||||
}
|
||||
|
||||
corr_max = 0.0;
|
||||
@ -256,7 +263,7 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
corr = corrvec1[ind1++] + corrvec2[ind2++];
|
||||
CorrSurfPtr1[k] = corr;
|
||||
if (corr > corr_max) {
|
||||
corr_max = corr; /* update maximum */
|
||||
corr_max = corr; /* update maximum */
|
||||
max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
|
||||
}
|
||||
}
|
||||
@ -264,63 +271,66 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
ind1 = 0;
|
||||
ind2 = PITCH_BW;
|
||||
CorrSurfPtr1 = &CorrSurf[0][2];
|
||||
CorrSurfPtr2 = &CorrSurf[2*PITCH_BW][PITCH_BW+2];
|
||||
for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW; k++) {
|
||||
ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
|
||||
adj = 0.2 * ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as a function of ratio */
|
||||
CorrSurfPtr2 = &CorrSurf[2 * PITCH_BW][PITCH_BW + 2];
|
||||
for (k = 0; k < PITCH_LAG_SPAN2 - PITCH_BW; k++) {
|
||||
ratio = ((double)(ind1 + 12)) / ((double)(ind2 + 12));
|
||||
adj = 0.2 * ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as
|
||||
a function of ratio */
|
||||
corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
|
||||
CorrSurfPtr1[k] = corr;
|
||||
if (corr > corr_max) {
|
||||
corr_max = corr; /* update maximum */
|
||||
corr_max = corr; /* update maximum */
|
||||
max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
|
||||
}
|
||||
corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
|
||||
CorrSurfPtr2[k] = corr;
|
||||
if (corr > corr_max) {
|
||||
corr_max = corr; /* update maximum */
|
||||
corr_max = corr; /* update maximum */
|
||||
max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
|
||||
}
|
||||
}
|
||||
/* fill second and next to last rows of correlation surface */
|
||||
ind1 = 0;
|
||||
ind2 = PITCH_BW-1;
|
||||
ind2 = PITCH_BW - 1;
|
||||
CorrSurfPtr1 = &CorrSurf[1][2];
|
||||
CorrSurfPtr2 = &CorrSurf[2*PITCH_BW-1][PITCH_BW+1];
|
||||
for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW+1; k++) {
|
||||
ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
|
||||
adj = 0.9 * ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as a function of ratio */
|
||||
CorrSurfPtr2 = &CorrSurf[2 * PITCH_BW - 1][PITCH_BW + 1];
|
||||
for (k = 0; k < PITCH_LAG_SPAN2 - PITCH_BW + 1; k++) {
|
||||
ratio = ((double)(ind1 + 12)) / ((double)(ind2 + 12));
|
||||
adj = 0.9 * ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as
|
||||
a function of ratio */
|
||||
corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
|
||||
CorrSurfPtr1[k] = corr;
|
||||
if (corr > corr_max) {
|
||||
corr_max = corr; /* update maximum */
|
||||
corr_max = corr; /* update maximum */
|
||||
max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
|
||||
}
|
||||
corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
|
||||
CorrSurfPtr2[k] = corr;
|
||||
if (corr > corr_max) {
|
||||
corr_max = corr; /* update maximum */
|
||||
corr_max = corr; /* update maximum */
|
||||
max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
|
||||
}
|
||||
}
|
||||
/* fill remainder of correlation surface */
|
||||
for (m = 2; m < PITCH_BW; m++) {
|
||||
ind1 = 0;
|
||||
ind2 = PITCH_BW - m; /* always larger than ind1 */
|
||||
ind2 = PITCH_BW - m; /* always larger than ind1 */
|
||||
CorrSurfPtr1 = &CorrSurf[m][2];
|
||||
CorrSurfPtr2 = &CorrSurf[2*PITCH_BW-m][PITCH_BW+2-m];
|
||||
for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW+m; k++) {
|
||||
ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
|
||||
adj = ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as a function of ratio */
|
||||
CorrSurfPtr2 = &CorrSurf[2 * PITCH_BW - m][PITCH_BW + 2 - m];
|
||||
for (k = 0; k < PITCH_LAG_SPAN2 - PITCH_BW + m; k++) {
|
||||
ratio = ((double)(ind1 + 12)) / ((double)(ind2 + 12));
|
||||
adj = ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as a
|
||||
function of ratio */
|
||||
corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
|
||||
CorrSurfPtr1[k] = corr;
|
||||
if (corr > corr_max) {
|
||||
corr_max = corr; /* update maximum */
|
||||
corr_max = corr; /* update maximum */
|
||||
max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
|
||||
}
|
||||
corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
|
||||
CorrSurfPtr2[k] = corr;
|
||||
if (corr > corr_max) {
|
||||
corr_max = corr; /* update maximum */
|
||||
corr_max = corr; /* update maximum */
|
||||
max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
|
||||
}
|
||||
}
|
||||
@ -331,33 +341,41 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
|
||||
peaks_ind = 0;
|
||||
/* find peaks */
|
||||
for (m = 1; m < PITCH_BW+1; m++) {
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
|
||||
for (m = 1; m < PITCH_BW + 1; m++) {
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS)
|
||||
break;
|
||||
CorrSurfPtr1 = &CorrSurf[m][2];
|
||||
for (k = 2; k < PITCH_LAG_SPAN2-PITCH_BW-2+m; k++) {
|
||||
for (k = 2; k < PITCH_LAG_SPAN2 - PITCH_BW - 2 + m; k++) {
|
||||
corr = CorrSurfPtr1[k];
|
||||
if (corr > corr_max) {
|
||||
if ( (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+5)]) && (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+4)]) ) {
|
||||
if ( (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+4)]) && (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+5)]) ) {
|
||||
if ((corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2 + 5)]) &&
|
||||
(corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2 + 4)])) {
|
||||
if ((corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2 + 4)]) &&
|
||||
(corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2 + 5)])) {
|
||||
/* found a peak; store index into matrix */
|
||||
peaks[peaks_ind++] = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (m = PITCH_BW+1; m < 2*PITCH_BW; m++) {
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
|
||||
for (m = PITCH_BW + 1; m < 2 * PITCH_BW; m++) {
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS)
|
||||
break;
|
||||
CorrSurfPtr1 = &CorrSurf[m][2];
|
||||
for (k = 2+m-PITCH_BW; k < PITCH_LAG_SPAN2-2; k++) {
|
||||
for (k = 2 + m - PITCH_BW; k < PITCH_LAG_SPAN2 - 2; k++) {
|
||||
corr = CorrSurfPtr1[k];
|
||||
if (corr > corr_max) {
|
||||
if ( (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+5)]) && (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+4)]) ) {
|
||||
if ( (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+4)]) && (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+5)]) ) {
|
||||
if ((corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2 + 5)]) &&
|
||||
(corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2 + 4)])) {
|
||||
if ((corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2 + 4)]) &&
|
||||
(corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2 + 5)])) {
|
||||
/* found a peak; store index into matrix */
|
||||
peaks[peaks_ind++] = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
|
||||
if (peaks_ind == PITCH_MAX_NUM_PEAKS)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -371,28 +389,32 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
peak = peaks[k];
|
||||
|
||||
/* compute four interpolated values around current peak */
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)], &intrp_a);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - 1 ], &intrp_b);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak ], &intrp_c);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)], &intrp_d);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 5)], &intrp_a);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - 1], &intrp_b);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak], &intrp_c);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 4)], &intrp_d);
|
||||
|
||||
/* determine maximum of the interpolated values */
|
||||
corr = CorrSurfPtr1[peak];
|
||||
corr_max = intrp_a;
|
||||
if (intrp_b > corr_max) corr_max = intrp_b;
|
||||
if (intrp_c > corr_max) corr_max = intrp_c;
|
||||
if (intrp_d > corr_max) corr_max = intrp_d;
|
||||
if (intrp_b > corr_max)
|
||||
corr_max = intrp_b;
|
||||
if (intrp_c > corr_max)
|
||||
corr_max = intrp_c;
|
||||
if (intrp_d > corr_max)
|
||||
corr_max = intrp_d;
|
||||
|
||||
/* determine where the peak sits and fill a 3x3 matrix around it */
|
||||
row = peak / (PITCH_LAG_SPAN2+4);
|
||||
lags1[k] = (double) ((peak - row * (PITCH_LAG_SPAN2+4)) + PITCH_MIN_LAG/2 - 4);
|
||||
lags2[k] = (double) (lags1[k] + PITCH_BW - row);
|
||||
if ( corr > corr_max ) {
|
||||
T[0][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
|
||||
T[2][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
|
||||
row = peak / (PITCH_LAG_SPAN2 + 4);
|
||||
lags1[k] = (double)((peak - row * (PITCH_LAG_SPAN2 + 4)) +
|
||||
PITCH_MIN_LAG / 2 - 4);
|
||||
lags2[k] = (double)(lags1[k] + PITCH_BW - row);
|
||||
if (corr > corr_max) {
|
||||
T[0][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 5)];
|
||||
T[2][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 4)];
|
||||
T[1][1] = corr;
|
||||
T[0][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
|
||||
T[2][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
|
||||
T[0][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 4)];
|
||||
T[2][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 5)];
|
||||
T[1][0] = intrp_a;
|
||||
T[0][1] = intrp_b;
|
||||
T[2][1] = intrp_c;
|
||||
@ -401,51 +423,55 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
if (intrp_a == corr_max) {
|
||||
lags1[k] -= 0.5;
|
||||
lags2[k] += 0.5;
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - 2*(PITCH_LAG_SPAN2+5)], &T[0][0]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (2*PITCH_LAG_SPAN2+9)], &T[2][0]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - 2 * (PITCH_LAG_SPAN2 + 5)],
|
||||
&T[0][0]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (2 * PITCH_LAG_SPAN2 + 9)],
|
||||
&T[2][0]);
|
||||
T[1][1] = intrp_a;
|
||||
T[0][2] = intrp_b;
|
||||
T[2][2] = intrp_c;
|
||||
T[1][0] = CorrSurfPtr1[peak - (2*PITCH_LAG_SPAN2+9)];
|
||||
T[0][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
|
||||
T[2][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
|
||||
T[1][0] = CorrSurfPtr1[peak - (2 * PITCH_LAG_SPAN2 + 9)];
|
||||
T[0][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 5)];
|
||||
T[2][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 4)];
|
||||
T[1][2] = corr;
|
||||
} else if (intrp_b == corr_max) {
|
||||
lags1[k] -= 0.5;
|
||||
lags2[k] -= 0.5;
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+6)], &T[0][0]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 6)], &T[0][0]);
|
||||
T[2][0] = intrp_a;
|
||||
T[1][1] = intrp_b;
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+3)], &T[0][2]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 3)], &T[0][2]);
|
||||
T[2][2] = intrp_d;
|
||||
T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
|
||||
T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 5)];
|
||||
T[0][1] = CorrSurfPtr1[peak - 1];
|
||||
T[2][1] = corr;
|
||||
T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
|
||||
T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 4)];
|
||||
} else if (intrp_c == corr_max) {
|
||||
lags1[k] += 0.5;
|
||||
lags2[k] += 0.5;
|
||||
T[0][0] = intrp_a;
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)], &T[2][0]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 4)], &T[2][0]);
|
||||
T[1][1] = intrp_c;
|
||||
T[0][2] = intrp_d;
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)], &T[2][2]);
|
||||
T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 5)], &T[2][2]);
|
||||
T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2 + 4)];
|
||||
T[0][1] = corr;
|
||||
T[2][1] = CorrSurfPtr1[peak + 1];
|
||||
T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
|
||||
T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 5)];
|
||||
} else {
|
||||
lags1[k] += 0.5;
|
||||
lags2[k] -= 0.5;
|
||||
T[0][0] = intrp_b;
|
||||
T[2][0] = intrp_c;
|
||||
T[1][1] = intrp_d;
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + 2*(PITCH_LAG_SPAN2+4)], &T[0][2]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (2*PITCH_LAG_SPAN2+9)], &T[2][2]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + 2 * (PITCH_LAG_SPAN2 + 4)],
|
||||
&T[0][2]);
|
||||
IntrepolFilter(&CorrSurfPtr1[peak + (2 * PITCH_LAG_SPAN2 + 9)],
|
||||
&T[2][2]);
|
||||
T[1][0] = corr;
|
||||
T[0][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
|
||||
T[2][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
|
||||
T[1][2] = CorrSurfPtr1[peak + (2*PITCH_LAG_SPAN2+9)];
|
||||
T[0][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 4)];
|
||||
T[2][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2 + 5)];
|
||||
T[1][2] = CorrSurfPtr1[peak + (2 * PITCH_LAG_SPAN2 + 9)];
|
||||
}
|
||||
}
|
||||
|
||||
@ -466,27 +492,34 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
lags1[peak] *= 2.0;
|
||||
lags2[peak] *= 2.0;
|
||||
|
||||
if (lags1[peak] < (double) PITCH_MIN_LAG) lags1[peak] = (double) PITCH_MIN_LAG;
|
||||
if (lags2[peak] < (double) PITCH_MIN_LAG) lags2[peak] = (double) PITCH_MIN_LAG;
|
||||
if (lags1[peak] > (double) PITCH_MAX_LAG) lags1[peak] = (double) PITCH_MAX_LAG;
|
||||
if (lags2[peak] > (double) PITCH_MAX_LAG) lags2[peak] = (double) PITCH_MAX_LAG;
|
||||
if (lags1[peak] < (double)PITCH_MIN_LAG)
|
||||
lags1[peak] = (double)PITCH_MIN_LAG;
|
||||
if (lags2[peak] < (double)PITCH_MIN_LAG)
|
||||
lags2[peak] = (double)PITCH_MIN_LAG;
|
||||
if (lags1[peak] > (double)PITCH_MAX_LAG)
|
||||
lags1[peak] = (double)PITCH_MAX_LAG;
|
||||
if (lags2[peak] > (double)PITCH_MAX_LAG)
|
||||
lags2[peak] = (double)PITCH_MAX_LAG;
|
||||
|
||||
/* store lags of highest peak in output array */
|
||||
lags[0] = lags1[peak];
|
||||
lags[1] = lags1[peak];
|
||||
lags[2] = lags2[peak];
|
||||
lags[3] = lags2[peak];
|
||||
}
|
||||
else
|
||||
{
|
||||
row = max_ind / (PITCH_LAG_SPAN2+4);
|
||||
lags1[0] = (double) ((max_ind - row * (PITCH_LAG_SPAN2+4)) + PITCH_MIN_LAG/2 - 4);
|
||||
lags2[0] = (double) (lags1[0] + PITCH_BW - row);
|
||||
} else {
|
||||
row = max_ind / (PITCH_LAG_SPAN2 + 4);
|
||||
lags1[0] = (double)((max_ind - row * (PITCH_LAG_SPAN2 + 4)) +
|
||||
PITCH_MIN_LAG / 2 - 4);
|
||||
lags2[0] = (double)(lags1[0] + PITCH_BW - row);
|
||||
|
||||
if (lags1[0] < (double) PITCH_MIN_LAG) lags1[0] = (double) PITCH_MIN_LAG;
|
||||
if (lags2[0] < (double) PITCH_MIN_LAG) lags2[0] = (double) PITCH_MIN_LAG;
|
||||
if (lags1[0] > (double) PITCH_MAX_LAG) lags1[0] = (double) PITCH_MAX_LAG;
|
||||
if (lags2[0] > (double) PITCH_MAX_LAG) lags2[0] = (double) PITCH_MAX_LAG;
|
||||
if (lags1[0] < (double)PITCH_MIN_LAG)
|
||||
lags1[0] = (double)PITCH_MIN_LAG;
|
||||
if (lags2[0] < (double)PITCH_MIN_LAG)
|
||||
lags2[0] = (double)PITCH_MIN_LAG;
|
||||
if (lags1[0] > (double)PITCH_MAX_LAG)
|
||||
lags1[0] = (double)PITCH_MAX_LAG;
|
||||
if (lags2[0] > (double)PITCH_MAX_LAG)
|
||||
lags2[0] = (double)PITCH_MAX_LAG;
|
||||
|
||||
/* store lags of highest peak in output array */
|
||||
lags[0] = lags1[0];
|
||||
@ -498,35 +531,37 @@ static void WebRtcIsac_InitializePitch(const double* in,
|
||||
|
||||
RTC_POP_IGNORING_WFRAME_LARGER_THAN()
|
||||
|
||||
/* create weighting matrix by orthogonalizing a basis of polynomials of increasing order
|
||||
* t = (0:4)';
|
||||
* A = [t.^0, t.^1, t.^2, t.^3, t.^4];
|
||||
* [Q, dummy] = qr(A);
|
||||
* P.Weight = Q * diag([0, .1, .5, 1, 1]) * Q'; */
|
||||
/* create weighting matrix by orthogonalizing a basis of polynomials of
|
||||
* increasing order t = (0:4)'; A = [t.^0, t.^1, t.^2, t.^3, t.^4]; [Q, dummy] =
|
||||
* qr(A); P.Weight = Q * diag([0, .1, .5, 1, 1]) * Q'; */
|
||||
static const double kWeight[5][5] = {
|
||||
{ 0.29714285714286, -0.30857142857143, -0.05714285714286, 0.05142857142857, 0.01714285714286},
|
||||
{-0.30857142857143, 0.67428571428571, -0.27142857142857, -0.14571428571429, 0.05142857142857},
|
||||
{-0.05714285714286, -0.27142857142857, 0.65714285714286, -0.27142857142857, -0.05714285714286},
|
||||
{ 0.05142857142857, -0.14571428571429, -0.27142857142857, 0.67428571428571, -0.30857142857143},
|
||||
{ 0.01714285714286, 0.05142857142857, -0.05714285714286, -0.30857142857143, 0.29714285714286}
|
||||
};
|
||||
{0.29714285714286, -0.30857142857143, -0.05714285714286, 0.05142857142857,
|
||||
0.01714285714286},
|
||||
{-0.30857142857143, 0.67428571428571, -0.27142857142857, -0.14571428571429,
|
||||
0.05142857142857},
|
||||
{-0.05714285714286, -0.27142857142857, 0.65714285714286, -0.27142857142857,
|
||||
-0.05714285714286},
|
||||
{0.05142857142857, -0.14571428571429, -0.27142857142857, 0.67428571428571,
|
||||
-0.30857142857143},
|
||||
{0.01714285714286, 0.05142857142857, -0.05714285714286, -0.30857142857143,
|
||||
0.29714285714286}};
|
||||
|
||||
/* second order high-pass filter */
|
||||
static void WebRtcIsac_Highpass(const double* in,
|
||||
double* out,
|
||||
double* state,
|
||||
size_t N) {
|
||||
double* out,
|
||||
double* state,
|
||||
size_t N) {
|
||||
/* create high-pass filter ocefficients
|
||||
* z = 0.998 * exp(j*2*pi*35/8000);
|
||||
* p = 0.94 * exp(j*2*pi*140/8000);
|
||||
* HP_b = [1, -2*real(z), abs(z)^2];
|
||||
* HP_a = [1, -2*real(p), abs(p)^2]; */
|
||||
static const double a_coef[2] = { 1.86864659625574, -0.88360000000000};
|
||||
static const double b_coef[2] = {-1.99524591718270, 0.99600400000000};
|
||||
static const double a_coef[2] = {1.86864659625574, -0.88360000000000};
|
||||
static const double b_coef[2] = {-1.99524591718270, 0.99600400000000};
|
||||
|
||||
size_t k;
|
||||
|
||||
for (k=0; k<N; k++) {
|
||||
for (k = 0; k < N; k++) {
|
||||
*out = *in + state[1];
|
||||
state[1] = state[0] + b_coef[0] * *in + a_coef[0] * *out;
|
||||
state[0] = b_coef[1] * *in++ + a_coef[1] * *out++;
|
||||
@ -535,17 +570,18 @@ static void WebRtcIsac_Highpass(const double* in,
|
||||
|
||||
RTC_PUSH_IGNORING_WFRAME_LARGER_THAN()
|
||||
|
||||
void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN samples */
|
||||
double *out, /* PITCH_FRAME_LEN+QLOOKAHEAD samples */
|
||||
PitchAnalysisStruct *State,
|
||||
double *lags,
|
||||
double *gains)
|
||||
{
|
||||
void WebRtcIsac_PitchAnalysis(
|
||||
const double* in, /* PITCH_FRAME_LEN samples */
|
||||
double* out, /* PITCH_FRAME_LEN+QLOOKAHEAD samples */
|
||||
PitchAnalysisStruct* State,
|
||||
double* lags,
|
||||
double* gains) {
|
||||
double HPin[PITCH_FRAME_LEN];
|
||||
double Weighted[PITCH_FRAME_LEN];
|
||||
double Whitened[PITCH_FRAME_LEN + QLOOKAHEAD];
|
||||
double inbuf[PITCH_FRAME_LEN + QLOOKAHEAD];
|
||||
double out_G[PITCH_FRAME_LEN + QLOOKAHEAD]; // could be removed by using out instead
|
||||
double out_G[PITCH_FRAME_LEN +
|
||||
QLOOKAHEAD]; // could be removed by using out instead
|
||||
double out_dG[4][PITCH_FRAME_LEN + QLOOKAHEAD];
|
||||
double old_lag, old_gain;
|
||||
double nrg_wht, tmp;
|
||||
@ -562,10 +598,12 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
memcpy(Whitened, State->whitened_buf, sizeof(double) * QLOOKAHEAD);
|
||||
|
||||
/* compute weighted and whitened signals */
|
||||
WebRtcIsac_WeightingFilter(HPin, &Weighted[0], &Whitened[QLOOKAHEAD], &(State->Wghtstr));
|
||||
WebRtcIsac_WeightingFilter(HPin, &Weighted[0], &Whitened[QLOOKAHEAD],
|
||||
&(State->Wghtstr));
|
||||
|
||||
/* copy from buffer into state */
|
||||
memcpy(State->whitened_buf, Whitened+PITCH_FRAME_LEN, sizeof(double) * QLOOKAHEAD);
|
||||
memcpy(State->whitened_buf, Whitened + PITCH_FRAME_LEN,
|
||||
sizeof(double) * QLOOKAHEAD);
|
||||
|
||||
old_lag = State->PFstr_wght.oldlagp[0];
|
||||
old_gain = State->PFstr_wght.oldgainp[0];
|
||||
@ -573,7 +611,6 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
/* inital pitch estimate */
|
||||
WebRtcIsac_InitializePitch(Weighted, old_lag, old_gain, State, lags);
|
||||
|
||||
|
||||
/* Iterative optimization of lags - to be done */
|
||||
|
||||
/* compute energy of whitened signal */
|
||||
@ -581,10 +618,10 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
for (k = 0; k < PITCH_FRAME_LEN + QLOOKAHEAD; k++)
|
||||
nrg_wht += Whitened[k] * Whitened[k];
|
||||
|
||||
|
||||
/* Iterative optimization of gains */
|
||||
|
||||
/* set weights for energy, gain fluctiation, and spectral gain penalty functions */
|
||||
/* set weights for energy, gain fluctiation, and spectral gain penalty
|
||||
* functions */
|
||||
Wnrg = 1.0 / nrg_wht;
|
||||
Wgain = 0.005;
|
||||
Wfluct = 3.0;
|
||||
@ -596,9 +633,11 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
/* two iterations should be enough */
|
||||
for (iter = 0; iter < 2; iter++) {
|
||||
/* compute Jacobian of pre-filter output towards gains */
|
||||
WebRtcIsac_PitchfilterPre_gains(Whitened, out_G, out_dG, &(State->PFstr_wght), lags, gains);
|
||||
WebRtcIsac_PitchfilterPre_gains(Whitened, out_G, out_dG,
|
||||
&(State->PFstr_wght), lags, gains);
|
||||
|
||||
/* gradient and approximate Hessian (lower triangle) for minimizing the filter's output power */
|
||||
/* gradient and approximate Hessian (lower triangle) for minimizing the
|
||||
* filter's output power */
|
||||
for (k = 0; k < 4; k++) {
|
||||
tmp = 0.0;
|
||||
for (n = 0; n < PITCH_FRAME_LEN + QLOOKAHEAD; n++)
|
||||
@ -614,16 +653,17 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
}
|
||||
}
|
||||
|
||||
/* add gradient and Hessian (lower triangle) for dampening fast gain changes */
|
||||
/* add gradient and Hessian (lower triangle) for dampening fast gain changes
|
||||
*/
|
||||
for (k = 0; k < 4; k++) {
|
||||
tmp = kWeight[k+1][0] * old_gain;
|
||||
tmp = kWeight[k + 1][0] * old_gain;
|
||||
for (m = 0; m < 4; m++)
|
||||
tmp += kWeight[k+1][m+1] * gains[m];
|
||||
tmp += kWeight[k + 1][m + 1] * gains[m];
|
||||
grad[k] += tmp * Wfluct;
|
||||
}
|
||||
for (k = 0; k < 4; k++) {
|
||||
for (m = 0; m <= k; m++) {
|
||||
H[k][m] += kWeight[k+1][m+1] * Wfluct;
|
||||
H[k][m] += kWeight[k + 1][m + 1] * Wfluct;
|
||||
}
|
||||
}
|
||||
|
||||
@ -637,10 +677,10 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
grad[3] += 1.33 * (tmp * tmp * Wgain);
|
||||
H[3][3] += 2.66 * tmp * (tmp * tmp * Wgain);
|
||||
|
||||
|
||||
/* compute Cholesky factorization of Hessian
|
||||
* by overwritting the upper triangle; scale factors on diagonal
|
||||
* (for non pc-platforms store the inverse of the diagonals seperately to minimize divisions) */
|
||||
* (for non pc-platforms store the inverse of the diagonals seperately to
|
||||
* minimize divisions) */
|
||||
H[0][1] = H[1][0] / H[0][0];
|
||||
H[0][2] = H[2][0] / H[0][0];
|
||||
H[0][3] = H[3][0] / H[0][0];
|
||||
@ -648,8 +688,10 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
H[1][2] = (H[2][1] - H[0][1] * H[2][0]) / H[1][1];
|
||||
H[1][3] = (H[3][1] - H[0][1] * H[3][0]) / H[1][1];
|
||||
H[2][2] -= H[0][0] * H[0][2] * H[0][2] + H[1][1] * H[1][2] * H[1][2];
|
||||
H[2][3] = (H[3][2] - H[0][2] * H[3][0] - H[1][2] * H[1][1] * H[1][3]) / H[2][2];
|
||||
H[3][3] -= H[0][0] * H[0][3] * H[0][3] + H[1][1] * H[1][3] * H[1][3] + H[2][2] * H[2][3] * H[2][3];
|
||||
H[2][3] =
|
||||
(H[3][2] - H[0][2] * H[3][0] - H[1][2] * H[1][1] * H[1][3]) / H[2][2];
|
||||
H[3][3] -= H[0][0] * H[0][3] * H[0][3] + H[1][1] * H[1][3] * H[1][3] +
|
||||
H[2][2] * H[2][3] * H[2][3];
|
||||
|
||||
/* Compute update as delta_gains = -inv(H) * grad */
|
||||
/* copy and negate */
|
||||
@ -682,7 +724,7 @@ void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN
|
||||
|
||||
/* concatenate previous input's end and current input */
|
||||
memcpy(inbuf, State->inbuf, sizeof(double) * QLOOKAHEAD);
|
||||
memcpy(inbuf+QLOOKAHEAD, in, sizeof(double) * PITCH_FRAME_LEN);
|
||||
memcpy(inbuf + QLOOKAHEAD, in, sizeof(double) * PITCH_FRAME_LEN);
|
||||
|
||||
/* lookahead pitch filtering for masking analysis */
|
||||
WebRtcIsac_PitchfilterPre_la(inbuf, out, &(State->PFstr), lags, gains);
|
||||
|
||||
@ -12,8 +12,8 @@
|
||||
#include <memory.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
|
||||
#include "modules/audio_coding/codecs/isac/main/source/os_specific_inline.h"
|
||||
#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
|
||||
#include "rtc_base/compile_assert_c.h"
|
||||
|
||||
/*
|
||||
@ -31,35 +31,34 @@
|
||||
*/
|
||||
|
||||
static const double kDampFilter[PITCH_DAMPORDER] = {-0.07, 0.25, 0.64, 0.25,
|
||||
-0.07};
|
||||
-0.07};
|
||||
|
||||
/* interpolation coefficients; generated by design_pitch_filter.m */
|
||||
static const double kIntrpCoef[PITCH_FRACS][PITCH_FRACORDER] = {
|
||||
{-0.02239172458614, 0.06653315052934, -0.16515880017569, 0.60701333734125,
|
||||
0.64671399919202, -0.20249000396417, 0.09926548334755, -0.04765933793109,
|
||||
{-0.02239172458614, 0.06653315052934, -0.16515880017569, 0.60701333734125,
|
||||
0.64671399919202, -0.20249000396417, 0.09926548334755, -0.04765933793109,
|
||||
0.01754159521746},
|
||||
{-0.01985640750434, 0.05816126837866, -0.13991265473714, 0.44560418147643,
|
||||
0.79117042386876, -0.20266133815188, 0.09585268418555, -0.04533310458084,
|
||||
{-0.01985640750434, 0.05816126837866, -0.13991265473714, 0.44560418147643,
|
||||
0.79117042386876, -0.20266133815188, 0.09585268418555, -0.04533310458084,
|
||||
0.01654127246314},
|
||||
{-0.01463300534216, 0.04229888475060, -0.09897034715253, 0.28284326017787,
|
||||
0.90385267956632, -0.16976950138649, 0.07704272393639, -0.03584218578311,
|
||||
{-0.01463300534216, 0.04229888475060, -0.09897034715253, 0.28284326017787,
|
||||
0.90385267956632, -0.16976950138649, 0.07704272393639, -0.03584218578311,
|
||||
0.01295781500709},
|
||||
{-0.00764851320885, 0.02184035544377, -0.04985561057281, 0.13083306574393,
|
||||
0.97545011664662, -0.10177807997561, 0.04400901776474, -0.02010737175166,
|
||||
{-0.00764851320885, 0.02184035544377, -0.04985561057281, 0.13083306574393,
|
||||
0.97545011664662, -0.10177807997561, 0.04400901776474, -0.02010737175166,
|
||||
0.00719783432422},
|
||||
{-0.00000000000000, 0.00000000000000, -0.00000000000001, 0.00000000000001,
|
||||
0.99999999999999, 0.00000000000001, -0.00000000000001, 0.00000000000000,
|
||||
{-0.00000000000000, 0.00000000000000, -0.00000000000001, 0.00000000000001,
|
||||
0.99999999999999, 0.00000000000001, -0.00000000000001, 0.00000000000000,
|
||||
-0.00000000000000},
|
||||
{0.00719783432422, -0.02010737175166, 0.04400901776474, -0.10177807997562,
|
||||
0.97545011664663, 0.13083306574393, -0.04985561057280, 0.02184035544377,
|
||||
{0.00719783432422, -0.02010737175166, 0.04400901776474, -0.10177807997562,
|
||||
0.97545011664663, 0.13083306574393, -0.04985561057280, 0.02184035544377,
|
||||
-0.00764851320885},
|
||||
{0.01295781500710, -0.03584218578312, 0.07704272393640, -0.16976950138650,
|
||||
0.90385267956634, 0.28284326017785, -0.09897034715252, 0.04229888475059,
|
||||
{0.01295781500710, -0.03584218578312, 0.07704272393640, -0.16976950138650,
|
||||
0.90385267956634, 0.28284326017785, -0.09897034715252, 0.04229888475059,
|
||||
-0.01463300534216},
|
||||
{0.01654127246315, -0.04533310458085, 0.09585268418557, -0.20266133815190,
|
||||
0.79117042386878, 0.44560418147640, -0.13991265473712, 0.05816126837865,
|
||||
-0.01985640750433}
|
||||
};
|
||||
{0.01654127246315, -0.04533310458085, 0.09585268418557, -0.20266133815190,
|
||||
0.79117042386878, 0.44560418147640, -0.13991265473712, 0.05816126837865,
|
||||
-0.01985640750433}};
|
||||
|
||||
/*
|
||||
* Enumerating the operation of the filter.
|
||||
@ -78,7 +77,10 @@ static const double kIntrpCoef[PITCH_FRACS][PITCH_FRACORDER] = {
|
||||
* used to find the optimal gain.
|
||||
*/
|
||||
typedef enum {
|
||||
kPitchFilterPre, kPitchFilterPost, kPitchFilterPreLa, kPitchFilterPreGain
|
||||
kPitchFilterPre,
|
||||
kPitchFilterPost,
|
||||
kPitchFilterPreLa,
|
||||
kPitchFilterPreGain
|
||||
} PitchFilterOperation;
|
||||
|
||||
/*
|
||||
@ -104,7 +106,7 @@ typedef enum {
|
||||
typedef struct {
|
||||
double buffer[PITCH_INTBUFFSIZE + QLOOKAHEAD];
|
||||
double damper_state[PITCH_DAMPORDER];
|
||||
const double *interpol_coeff;
|
||||
const double* interpol_coeff;
|
||||
double gain;
|
||||
double lag;
|
||||
int lag_offset;
|
||||
@ -132,7 +134,8 @@ typedef struct {
|
||||
* where the output of different gain values (differential
|
||||
* change to gain) is written.
|
||||
*/
|
||||
static void FilterSegment(const double* in_data, PitchFilterParam* parameters,
|
||||
static void FilterSegment(const double* in_data,
|
||||
PitchFilterParam* parameters,
|
||||
double* out_data,
|
||||
double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD]) {
|
||||
int n;
|
||||
@ -173,15 +176,15 @@ static void FilterSegment(const double* in_data, PitchFilterParam* parameters,
|
||||
for (j = 0; j < parameters->sub_frame + 1; ++j) {
|
||||
/* Filter for fractional pitch. */
|
||||
sum2 = 0.0;
|
||||
for (m = PITCH_FRACORDER-1; m >= m_tmp; --m) {
|
||||
for (m = PITCH_FRACORDER - 1; m >= m_tmp; --m) {
|
||||
/* `lag_index + m` is always larger than or equal to zero, see how
|
||||
* m_tmp is computed. This is equivalent to assume samples outside
|
||||
* `out_dg[j]` are zero. */
|
||||
sum2 += out_dg[j][lag_index + m] * parameters->interpol_coeff[m];
|
||||
}
|
||||
/* Add the contribution of differential gain change. */
|
||||
parameters->damper_state_dg[j][0] = parameters->gain_mult[j] * sum +
|
||||
parameters->gain * sum2;
|
||||
parameters->damper_state_dg[j][0] =
|
||||
parameters->gain_mult[j] * sum + parameters->gain * sum2;
|
||||
}
|
||||
|
||||
/* Filter with damping filter, and store the results. */
|
||||
@ -201,8 +204,8 @@ static void FilterSegment(const double* in_data, PitchFilterParam* parameters,
|
||||
|
||||
/* Subtract from input and update buffer. */
|
||||
out_data[parameters->index] = in_data[parameters->index] - sum;
|
||||
parameters->buffer[pos] = in_data[parameters->index] +
|
||||
out_data[parameters->index];
|
||||
parameters->buffer[pos] =
|
||||
in_data[parameters->index] + out_data[parameters->index];
|
||||
|
||||
++parameters->index;
|
||||
++pos;
|
||||
@ -216,8 +219,8 @@ static void Update(PitchFilterParam* parameters) {
|
||||
double fraction;
|
||||
int fraction_index;
|
||||
/* Compute integer lag-offset. */
|
||||
parameters->lag_offset = WebRtcIsac_lrint(parameters->lag + PITCH_FILTDELAY +
|
||||
0.5);
|
||||
parameters->lag_offset =
|
||||
WebRtcIsac_lrint(parameters->lag + PITCH_FILTDELAY + 0.5);
|
||||
/* Find correct set of coefficients for computing fractional pitch. */
|
||||
fraction = parameters->lag_offset - (parameters->lag + PITCH_FILTDELAY);
|
||||
fraction_index = WebRtcIsac_lrint(PITCH_FRACS * fraction - 0.5);
|
||||
@ -257,8 +260,11 @@ static void Update(PitchFilterParam* parameters) {
|
||||
* where the output of different gain values (differential
|
||||
* change to gain) is written.
|
||||
*/
|
||||
static void FilterFrame(const double* in_data, PitchFiltstr* filter_state,
|
||||
double* lags, double* gains, PitchFilterOperation mode,
|
||||
static void FilterFrame(const double* in_data,
|
||||
PitchFiltstr* filter_state,
|
||||
double* lags,
|
||||
double* gains,
|
||||
PitchFilterOperation mode,
|
||||
double* out_data,
|
||||
double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD]) {
|
||||
PitchFilterParam filter_parameters;
|
||||
@ -276,7 +282,7 @@ static void FilterFrame(const double* in_data, PitchFiltstr* filter_state,
|
||||
memcpy(filter_parameters.buffer, filter_state->ubuf,
|
||||
sizeof(filter_state->ubuf));
|
||||
RTC_COMPILE_ASSERT(sizeof(filter_parameters.buffer) >=
|
||||
sizeof(filter_state->ubuf));
|
||||
sizeof(filter_state->ubuf));
|
||||
memset(filter_parameters.buffer +
|
||||
sizeof(filter_state->ubuf) / sizeof(filter_state->ubuf[0]),
|
||||
0, sizeof(filter_parameters.buffer) - sizeof(filter_state->ubuf));
|
||||
@ -289,7 +295,7 @@ static void FilterFrame(const double* in_data, PitchFiltstr* filter_state,
|
||||
memset(filter_parameters.damper_state_dg, 0,
|
||||
sizeof(filter_parameters.damper_state_dg));
|
||||
for (n = 0; n < PITCH_SUBFRAMES; ++n) {
|
||||
//memset(out_dg[n], 0, sizeof(double) * (PITCH_FRAME_LEN + QLOOKAHEAD));
|
||||
// memset(out_dg[n], 0, sizeof(double) * (PITCH_FRAME_LEN + QLOOKAHEAD));
|
||||
memset(out_dg[n], 0, sizeof(out_dg[n]));
|
||||
}
|
||||
} else if (mode == kPitchFilterPost) {
|
||||
@ -360,29 +366,38 @@ static void FilterFrame(const double* in_data, PitchFiltstr* filter_state,
|
||||
}
|
||||
}
|
||||
|
||||
void WebRtcIsac_PitchfilterPre(double* in_data, double* out_data,
|
||||
PitchFiltstr* pf_state, double* lags,
|
||||
void WebRtcIsac_PitchfilterPre(double* in_data,
|
||||
double* out_data,
|
||||
PitchFiltstr* pf_state,
|
||||
double* lags,
|
||||
double* gains) {
|
||||
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPre, out_data, NULL);
|
||||
}
|
||||
|
||||
void WebRtcIsac_PitchfilterPre_la(double* in_data, double* out_data,
|
||||
PitchFiltstr* pf_state, double* lags,
|
||||
void WebRtcIsac_PitchfilterPre_la(double* in_data,
|
||||
double* out_data,
|
||||
PitchFiltstr* pf_state,
|
||||
double* lags,
|
||||
double* gains) {
|
||||
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPreLa, out_data,
|
||||
NULL);
|
||||
}
|
||||
|
||||
void WebRtcIsac_PitchfilterPre_gains(
|
||||
double* in_data, double* out_data,
|
||||
double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD], PitchFiltstr *pf_state,
|
||||
double* lags, double* gains) {
|
||||
double* in_data,
|
||||
double* out_data,
|
||||
double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD],
|
||||
PitchFiltstr* pf_state,
|
||||
double* lags,
|
||||
double* gains) {
|
||||
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPreGain, out_data,
|
||||
out_dg);
|
||||
}
|
||||
|
||||
void WebRtcIsac_PitchfilterPost(double* in_data, double* out_data,
|
||||
PitchFiltstr* pf_state, double* lags,
|
||||
void WebRtcIsac_PitchfilterPost(double* in_data,
|
||||
double* out_data,
|
||||
PitchFiltstr* pf_state,
|
||||
double* lags,
|
||||
double* gains) {
|
||||
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPost, out_data, NULL);
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user