/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/utility/delay_estimator.h" #include #include #include // Number of right shifts for scaling is linearly depending on number of bits in // the far-end binary spectrum. static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum. static const int kShiftsLinearSlope = 3; static const int32_t kProbabilityOffset = 1024; // 2 in Q9. static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9. static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9. // Counts and returns number of bits of a 32-bit word. static int BitCount(uint32_t u32) { uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) - ((u32 >> 2) & 011111111111); tmp = ((tmp + (tmp >> 3)) & 030707070707); tmp = (tmp + (tmp >> 6)); tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; return ((int) tmp); } // Compares the |binary_vector| with all rows of the |binary_matrix| and counts // per row the number of times they have the same value. // // Inputs: // - binary_vector : binary "vector" stored in a long // - binary_matrix : binary "matrix" stored as a vector of long // - matrix_size : size of binary "matrix" // // Output: // - bit_counts : "Vector" stored as a long, containing for each // row the number of times the matrix row and the // input vector have the same value // static void BitCountComparison(uint32_t binary_vector, const uint32_t* binary_matrix, int matrix_size, int32_t* bit_counts) { int n = 0; // Compare |binary_vector| with all rows of the |binary_matrix| for (; n < matrix_size; n++) { bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]); } } void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { if (self == NULL) { return; } free(self->binary_far_history); self->binary_far_history = NULL; free(self->far_bit_counts); self->far_bit_counts = NULL; free(self); } BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend( int history_size) { BinaryDelayEstimatorFarend* self = NULL; if (history_size > 1) { // Sanity conditions fulfilled. self = malloc(sizeof(BinaryDelayEstimatorFarend)); } if (self != NULL) { int malloc_fail = 0; self->history_size = history_size; // Allocate memory for history buffers. self->binary_far_history = malloc(history_size * sizeof(uint32_t)); malloc_fail |= (self->binary_far_history == NULL); self->far_bit_counts = malloc(history_size * sizeof(int)); malloc_fail |= (self->far_bit_counts == NULL); if (malloc_fail) { WebRtc_FreeBinaryDelayEstimatorFarend(self); self = NULL; } } return self; } void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { assert(self != NULL); memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size); memset(self->far_bit_counts, 0, sizeof(int) * self->history_size); } void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle, uint32_t binary_far_spectrum) { assert(handle != NULL); // Shift binary spectrum history and insert current |binary_far_spectrum|. memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), (handle->history_size - 1) * sizeof(uint32_t)); handle->binary_far_history[0] = binary_far_spectrum; // Shift history of far-end binary spectrum bit counts and insert bit count // of current |binary_far_spectrum|. memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), (handle->history_size - 1) * sizeof(int)); handle->far_bit_counts[0] = BitCount(binary_far_spectrum); } void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) { if (self == NULL) { return; } free(self->mean_bit_counts); self->mean_bit_counts = NULL; free(self->bit_counts); self->bit_counts = NULL; free(self->binary_near_history); self->binary_near_history = NULL; // BinaryDelayEstimator does not have ownership of |farend|, hence we do not // free the memory here. That should be handled separately by the user. self->farend = NULL; free(self); } BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator( BinaryDelayEstimatorFarend* farend, int lookahead) { BinaryDelayEstimator* self = NULL; if ((farend != NULL) && (lookahead >= 0)) { // Sanity conditions fulfilled. self = malloc(sizeof(BinaryDelayEstimator)); } if (self != NULL) { int malloc_fail = 0; self->farend = farend; self->near_history_size = lookahead + 1; // Allocate memory for spectrum buffers. self->mean_bit_counts = malloc(farend->history_size * sizeof(int32_t)); malloc_fail |= (self->mean_bit_counts == NULL); self->bit_counts = malloc(farend->history_size * sizeof(int32_t)); malloc_fail |= (self->bit_counts == NULL); // Allocate memory for history buffers. self->binary_near_history = malloc((lookahead + 1) * sizeof(uint32_t)); malloc_fail |= (self->binary_near_history == NULL); if (malloc_fail) { WebRtc_FreeBinaryDelayEstimator(self); self = NULL; } } return self; } void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) { int i = 0; assert(self != NULL); memset(self->bit_counts, 0, sizeof(int32_t) * self->farend->history_size); memset(self->binary_near_history, 0, sizeof(uint32_t) * self->near_history_size); for (i = 0; i < self->farend->history_size; ++i) { self->mean_bit_counts[i] = (20 << 9); // 20 in Q9. } self->minimum_probability = (32 << 9); // 32 in Q9. self->last_delay_probability = (32 << 9); // 32 in Q9. // Default return value if we're unable to estimate. -1 is used for errors. self->last_delay = -2; } int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self, uint32_t binary_near_spectrum) { int i = 0; int candidate_delay = -1; int32_t value_best_candidate = 32 << 9; // 32 in Q9, (max |mean_bit_counts|). int32_t value_worst_candidate = 0; assert(self != NULL); if (self->near_history_size > 1) { // If we apply lookahead, shift near-end binary spectrum history. Insert // current |binary_near_spectrum| and pull out the delayed one. memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]), (self->near_history_size - 1) * sizeof(uint32_t)); self->binary_near_history[0] = binary_near_spectrum; binary_near_spectrum = self->binary_near_history[self->near_history_size - 1]; } // Compare with delayed spectra and store the |bit_counts| for each delay. BitCountComparison(binary_near_spectrum, self->farend->binary_far_history, self->farend->history_size, self->bit_counts); // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|. for (i = 0; i < self->farend->history_size; i++) { // |bit_counts| is constrained to [0, 32], meaning we can smooth with a // factor up to 2^26. We use Q9. int32_t bit_count = (self->bit_counts[i] << 9); // Q9. // Update |mean_bit_counts| only when far-end signal has something to // contribute. If |far_bit_counts| is zero the far-end signal is weak and // we likely have a poor echo condition, hence don't update. if (self->farend->far_bit_counts[i] > 0) { // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|. int shifts = kShiftsAtZero; shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4; WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i])); } } // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate| // of |mean_bit_counts|. for (i = 0; i < self->farend->history_size; i++) { if (self->mean_bit_counts[i] < value_best_candidate) { value_best_candidate = self->mean_bit_counts[i]; candidate_delay = i; } if (self->mean_bit_counts[i] > value_worst_candidate) { value_worst_candidate = self->mean_bit_counts[i]; } } // The |value_best_candidate| is a good indicator on the probability of // |candidate_delay| being an accurate delay (a small |value_best_candidate| // means a good binary match). In the following sections we make a decision // whether to update |last_delay| or not. // 1) If the difference bit counts between the best and the worst delay // candidates is too small we consider the situation to be unreliable and // don't update |last_delay|. // 2) If the situation is reliable we update |last_delay| if the value of the // best candidate delay has a value less than // i) an adaptive threshold |minimum_probability|, or // ii) this corresponding value |last_delay_probability|, but updated at // this time instant. // Update |minimum_probability|. if ((self->minimum_probability > kProbabilityLowerLimit) && (value_worst_candidate - value_best_candidate > kProbabilityMinSpread)) { // The "hard" threshold can't be lower than 17 (in Q9). // The valley in the curve also has to be distinct, i.e., the // difference between |value_worst_candidate| and |value_best_candidate| has // to be large enough. int32_t threshold = value_best_candidate + kProbabilityOffset; if (threshold < kProbabilityLowerLimit) { threshold = kProbabilityLowerLimit; } if (self->minimum_probability > threshold) { self->minimum_probability = threshold; } } // Update |last_delay_probability|. // We use a Markov type model, i.e., a slowly increasing level over time. self->last_delay_probability++; if (value_worst_candidate > value_best_candidate + kProbabilityOffset) { // Reliable delay value for usage. if (value_best_candidate < self->minimum_probability) { self->last_delay = candidate_delay; } if (value_best_candidate < self->last_delay_probability) { self->last_delay = candidate_delay; // Reset |last_delay_probability|. self->last_delay_probability = value_best_candidate; } } return self->last_delay; } int WebRtc_binary_last_delay(BinaryDelayEstimator* self) { assert(self != NULL); return self->last_delay; } int WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) { int delay_quality = 0; assert(self != NULL); // |last_delay_probability| is the opposite of quality and states how deep the // minimum of the cost function is. The value states how many non-matching // bits we have between the binary spectra for the corresponding delay // estimate. The range is thus from 0 to 32, since we use 32 bits in the // binary spectra. // Return the |delay_quality| = 1 - |last_delay_probability| / 32 (in Q14). delay_quality = (32 << 9) - self->last_delay_probability; if (delay_quality < 0) { delay_quality = 0; } return delay_quality; } void WebRtc_MeanEstimatorFix(int32_t new_value, int factor, int32_t* mean_value) { int32_t diff = new_value - *mean_value; // mean_new = mean_value + ((new_value - mean_value) >> factor); if (diff < 0) { diff = -((-diff) >> factor); } else { diff = (diff >> factor); } *mean_value += diff; }