/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/pacing/paced_sender.h" #include #include #include #include #include #include "webrtc/modules/include/module_common_types.h" #include "webrtc/modules/pacing/alr_detector.h" #include "webrtc/modules/pacing/bitrate_prober.h" #include "webrtc/modules/pacing/interval_budget.h" #include "webrtc/modules/utility/include/process_thread.h" #include "webrtc/rtc_base/checks.h" #include "webrtc/rtc_base/logging.h" #include "webrtc/system_wrappers/include/clock.h" #include "webrtc/system_wrappers/include/field_trial.h" namespace { // Time limit in milliseconds between packet bursts. const int64_t kMinPacketLimitMs = 5; // Upper cap on process interval, in case process has not been called in a long // time. const int64_t kMaxIntervalTimeMs = 30; } // namespace // TODO(sprang): Move at least PacketQueue out to separate // files, so that we can more easily test them. namespace webrtc { namespace paced_sender { struct Packet { Packet(RtpPacketSender::Priority priority, uint32_t ssrc, uint16_t seq_number, int64_t capture_time_ms, int64_t enqueue_time_ms, size_t length_in_bytes, bool retransmission, uint64_t enqueue_order) : priority(priority), ssrc(ssrc), sequence_number(seq_number), capture_time_ms(capture_time_ms), enqueue_time_ms(enqueue_time_ms), bytes(length_in_bytes), retransmission(retransmission), enqueue_order(enqueue_order) {} RtpPacketSender::Priority priority; uint32_t ssrc; uint16_t sequence_number; int64_t capture_time_ms; int64_t enqueue_time_ms; size_t bytes; bool retransmission; uint64_t enqueue_order; std::list::iterator this_it; }; // Used by priority queue to sort packets. struct Comparator { bool operator()(const Packet* first, const Packet* second) { // Highest prio = 0. if (first->priority != second->priority) return first->priority > second->priority; // Retransmissions go first. if (second->retransmission != first->retransmission) return second->retransmission; // Older frames have higher prio. if (first->capture_time_ms != second->capture_time_ms) return first->capture_time_ms > second->capture_time_ms; return first->enqueue_order > second->enqueue_order; } }; // Class encapsulating a priority queue with some extensions. class PacketQueue { public: explicit PacketQueue(const Clock* clock) : bytes_(0), clock_(clock), queue_time_sum_(0), time_last_updated_(clock_->TimeInMilliseconds()) {} virtual ~PacketQueue() {} void Push(const Packet& packet) { if (!AddToDupeSet(packet)) return; UpdateQueueTime(packet.enqueue_time_ms); // Store packet in list, use pointers in priority queue for cheaper moves. // Packets have a handle to its own iterator in the list, for easy removal // when popping from queue. packet_list_.push_front(packet); std::list::iterator it = packet_list_.begin(); it->this_it = it; // Handle for direct removal from list. prio_queue_.push(&(*it)); // Pointer into list. bytes_ += packet.bytes; } const Packet& BeginPop() { const Packet& packet = *prio_queue_.top(); prio_queue_.pop(); return packet; } void CancelPop(const Packet& packet) { prio_queue_.push(&(*packet.this_it)); } void FinalizePop(const Packet& packet) { RemoveFromDupeSet(packet); bytes_ -= packet.bytes; queue_time_sum_ -= (time_last_updated_ - packet.enqueue_time_ms); packet_list_.erase(packet.this_it); RTC_DCHECK_EQ(packet_list_.size(), prio_queue_.size()); if (packet_list_.empty()) RTC_DCHECK_EQ(0, queue_time_sum_); } bool Empty() const { return prio_queue_.empty(); } size_t SizeInPackets() const { return prio_queue_.size(); } uint64_t SizeInBytes() const { return bytes_; } int64_t OldestEnqueueTimeMs() const { auto it = packet_list_.rbegin(); if (it == packet_list_.rend()) return 0; return it->enqueue_time_ms; } void UpdateQueueTime(int64_t timestamp_ms) { RTC_DCHECK_GE(timestamp_ms, time_last_updated_); int64_t delta = timestamp_ms - time_last_updated_; // Use packet packet_list_.size() not prio_queue_.size() here, as there // might be an outstanding element popped from prio_queue_ currently in the // SendPacket() call, while packet_list_ will always be correct. queue_time_sum_ += delta * packet_list_.size(); time_last_updated_ = timestamp_ms; } int64_t AverageQueueTimeMs() const { if (prio_queue_.empty()) return 0; return queue_time_sum_ / packet_list_.size(); } private: // Try to add a packet to the set of ssrc/seqno identifiers currently in the // queue. Return true if inserted, false if this is a duplicate. bool AddToDupeSet(const Packet& packet) { SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); if (it == dupe_map_.end()) { // First for this ssrc, just insert. dupe_map_[packet.ssrc].insert(packet.sequence_number); return true; } // Insert returns a pair, where second is a bool set to true if new element. return it->second.insert(packet.sequence_number).second; } void RemoveFromDupeSet(const Packet& packet) { SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); RTC_DCHECK(it != dupe_map_.end()); it->second.erase(packet.sequence_number); if (it->second.empty()) { dupe_map_.erase(it); } } // List of packets, in the order the were enqueued. Since dequeueing may // occur out of order, use list instead of vector. std::list packet_list_; // Priority queue of the packets, sorted according to Comparator. // Use pointers into list, to avoid moving whole struct within heap. std::priority_queue, Comparator> prio_queue_; // Total number of bytes in the queue. uint64_t bytes_; // Map >, for checking duplicates. typedef std::map > SsrcSeqNoMap; SsrcSeqNoMap dupe_map_; const Clock* const clock_; int64_t queue_time_sum_; int64_t time_last_updated_; }; } // namespace paced_sender const int64_t PacedSender::kMaxQueueLengthMs = 2000; const float PacedSender::kDefaultPaceMultiplier = 2.5f; PacedSender::PacedSender(const Clock* clock, PacketSender* packet_sender, RtcEventLog* event_log) : clock_(clock), packet_sender_(packet_sender), alr_detector_(new AlrDetector()), paused_(false), media_budget_(new IntervalBudget(0)), padding_budget_(new IntervalBudget(0)), prober_(new BitrateProber(event_log)), probing_send_failure_(false), estimated_bitrate_bps_(0), min_send_bitrate_kbps_(0u), max_padding_bitrate_kbps_(0u), pacing_bitrate_kbps_(0), time_last_update_us_(clock->TimeInMicroseconds()), first_sent_packet_ms_(-1), packets_(new paced_sender::PacketQueue(clock)), packet_counter_(0), pacing_factor_(kDefaultPaceMultiplier), queue_time_limit(kMaxQueueLengthMs) { UpdateBudgetWithElapsedTime(kMinPacketLimitMs); } PacedSender::~PacedSender() {} void PacedSender::CreateProbeCluster(int bitrate_bps) { rtc::CritScope cs(&critsect_); prober_->CreateProbeCluster(bitrate_bps, clock_->TimeInMilliseconds()); } void PacedSender::Pause() { LOG(LS_INFO) << "PacedSender paused."; { rtc::CritScope cs(&critsect_); paused_ = true; } // Tell the process thread to call our TimeUntilNextProcess() method to get // a new (longer) estimate for when to call Process(). if (process_thread_) process_thread_->WakeUp(this); } void PacedSender::Resume() { LOG(LS_INFO) << "PacedSender resumed."; { rtc::CritScope cs(&critsect_); paused_ = false; } // Tell the process thread to call our TimeUntilNextProcess() method to // refresh the estimate for when to call Process(). if (process_thread_) process_thread_->WakeUp(this); } void PacedSender::SetProbingEnabled(bool enabled) { RTC_CHECK_EQ(0, packet_counter_); rtc::CritScope cs(&critsect_); prober_->SetEnabled(enabled); } void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) { if (bitrate_bps == 0) LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate."; rtc::CritScope cs(&critsect_); estimated_bitrate_bps_ = bitrate_bps; padding_budget_->set_target_rate_kbps( std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); pacing_bitrate_kbps_ = std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * pacing_factor_; alr_detector_->SetEstimatedBitrate(bitrate_bps); } void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps, int padding_bitrate) { rtc::CritScope cs(&critsect_); min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000; pacing_bitrate_kbps_ = std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * pacing_factor_; max_padding_bitrate_kbps_ = padding_bitrate / 1000; padding_budget_->set_target_rate_kbps( std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); } void PacedSender::InsertPacket(RtpPacketSender::Priority priority, uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, size_t bytes, bool retransmission) { rtc::CritScope cs(&critsect_); RTC_DCHECK(estimated_bitrate_bps_ > 0) << "SetEstimatedBitrate must be called before InsertPacket."; int64_t now_ms = clock_->TimeInMilliseconds(); prober_->OnIncomingPacket(bytes); if (capture_time_ms < 0) capture_time_ms = now_ms; packets_->Push(paced_sender::Packet(priority, ssrc, sequence_number, capture_time_ms, now_ms, bytes, retransmission, packet_counter_++)); } int64_t PacedSender::ExpectedQueueTimeMs() const { rtc::CritScope cs(&critsect_); RTC_DCHECK_GT(pacing_bitrate_kbps_, 0); return static_cast(packets_->SizeInBytes() * 8 / pacing_bitrate_kbps_); } rtc::Optional PacedSender::GetApplicationLimitedRegionStartTime() const { rtc::CritScope cs(&critsect_); return alr_detector_->GetApplicationLimitedRegionStartTime(); } size_t PacedSender::QueueSizePackets() const { rtc::CritScope cs(&critsect_); return packets_->SizeInPackets(); } int64_t PacedSender::FirstSentPacketTimeMs() const { rtc::CritScope cs(&critsect_); return first_sent_packet_ms_; } int64_t PacedSender::QueueInMs() const { rtc::CritScope cs(&critsect_); int64_t oldest_packet = packets_->OldestEnqueueTimeMs(); if (oldest_packet == 0) return 0; return clock_->TimeInMilliseconds() - oldest_packet; } int64_t PacedSender::AverageQueueTimeMs() { rtc::CritScope cs(&critsect_); packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); return packets_->AverageQueueTimeMs(); } int64_t PacedSender::TimeUntilNextProcess() { rtc::CritScope cs(&critsect_); if (paused_) return 1000 * 60 * 60; if (prober_->IsProbing()) { int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds()); if (ret > 0 || (ret == 0 && !probing_send_failure_)) return ret; } int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_; int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; return std::max(kMinPacketLimitMs - elapsed_time_ms, 0); } void PacedSender::Process() { int64_t now_us = clock_->TimeInMicroseconds(); rtc::CritScope cs(&critsect_); int64_t elapsed_time_ms = (now_us - time_last_update_us_ + 500) / 1000; time_last_update_us_ = now_us; int target_bitrate_kbps = pacing_bitrate_kbps_; if (!paused_ && elapsed_time_ms > 0) { size_t queue_size_bytes = packets_->SizeInBytes(); if (queue_size_bytes > 0) { // Assuming equal size packets and input/output rate, the average packet // has avg_time_left_ms left to get queue_size_bytes out of the queue, if // time constraint shall be met. Determine bitrate needed for that. packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); int64_t avg_time_left_ms = std::max( 1, queue_time_limit - packets_->AverageQueueTimeMs()); int min_bitrate_needed_kbps = static_cast(queue_size_bytes * 8 / avg_time_left_ms); if (min_bitrate_needed_kbps > target_bitrate_kbps) target_bitrate_kbps = min_bitrate_needed_kbps; } media_budget_->set_target_rate_kbps(target_bitrate_kbps); elapsed_time_ms = std::min(kMaxIntervalTimeMs, elapsed_time_ms); UpdateBudgetWithElapsedTime(elapsed_time_ms); } bool is_probing = prober_->IsProbing(); PacedPacketInfo pacing_info; size_t bytes_sent = 0; size_t recommended_probe_size = 0; if (is_probing) { pacing_info = prober_->CurrentCluster(); recommended_probe_size = prober_->RecommendedMinProbeSize(); } while (!packets_->Empty()) { // Since we need to release the lock in order to send, we first pop the // element from the priority queue but keep it in storage, so that we can // reinsert it if send fails. const paced_sender::Packet& packet = packets_->BeginPop(); if (SendPacket(packet, pacing_info)) { // Send succeeded, remove it from the queue. if (first_sent_packet_ms_ == -1) first_sent_packet_ms_ = clock_->TimeInMilliseconds(); bytes_sent += packet.bytes; packets_->FinalizePop(packet); if (is_probing && bytes_sent > recommended_probe_size) break; } else { // Send failed, put it back into the queue. packets_->CancelPop(packet); break; } } if (packets_->Empty() && !paused_) { // We can not send padding unless a normal packet has first been sent. If we // do, timestamps get messed up. if (packet_counter_ > 0) { int padding_needed = static_cast(is_probing ? (recommended_probe_size - bytes_sent) : padding_budget_->bytes_remaining()); if (padding_needed > 0) bytes_sent += SendPadding(padding_needed, pacing_info); } } if (is_probing) { probing_send_failure_ = bytes_sent == 0; if (!probing_send_failure_) prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent); } alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms); } void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) { LOG(LS_INFO) << "ProcessThreadAttached 0x" << std::hex << process_thread; process_thread_ = process_thread; } bool PacedSender::SendPacket(const paced_sender::Packet& packet, const PacedPacketInfo& pacing_info) { if (paused_) return false; if (media_budget_->bytes_remaining() == 0 && pacing_info.probe_cluster_id == PacedPacketInfo::kNotAProbe) { return false; } critsect_.Leave(); const bool success = packet_sender_->TimeToSendPacket( packet.ssrc, packet.sequence_number, packet.capture_time_ms, packet.retransmission, pacing_info); critsect_.Enter(); if (success) { // TODO(holmer): High priority packets should only be accounted for if we // are allocating bandwidth for audio. if (packet.priority != kHighPriority) { // Update media bytes sent. UpdateBudgetWithBytesSent(packet.bytes); } } return success; } size_t PacedSender::SendPadding(size_t padding_needed, const PacedPacketInfo& pacing_info) { critsect_.Leave(); size_t bytes_sent = packet_sender_->TimeToSendPadding(padding_needed, pacing_info); critsect_.Enter(); if (bytes_sent > 0) { UpdateBudgetWithBytesSent(bytes_sent); } return bytes_sent; } void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) { media_budget_->IncreaseBudget(delta_time_ms); padding_budget_->IncreaseBudget(delta_time_ms); } void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) { media_budget_->UseBudget(bytes_sent); padding_budget_->UseBudget(bytes_sent); } void PacedSender::SetPacingFactor(float pacing_factor) { rtc::CritScope cs(&critsect_); pacing_factor_ = pacing_factor; } void PacedSender::SetQueueTimeLimit(int limit_ms) { rtc::CritScope cs(&critsect_); queue_time_limit = limit_ms; } } // namespace webrtc