/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_MODULES_AUDIO_DEVICE_ANDROID_OPENSLES_OUTPUT_H_ #define WEBRTC_MODULES_AUDIO_DEVICE_ANDROID_OPENSLES_OUTPUT_H_ #include #include #include #include "webrtc/modules/audio_device/android/audio_manager_jni.h" #include "webrtc/modules/audio_device/android/low_latency_event.h" #include "webrtc/modules/audio_device/android/audio_common.h" #include "webrtc/modules/audio_device/include/audio_device_defines.h" #include "webrtc/modules/audio_device/include/audio_device.h" #include "webrtc/system_wrappers/interface/scoped_ptr.h" namespace webrtc { class AudioDeviceBuffer; class CriticalSectionWrapper; class FineAudioBuffer; class SingleRwFifo; class ThreadWrapper; // OpenSL implementation that facilitate playing PCM data to an android device. // This class is Thread-compatible. I.e. Given an instance of this class, calls // to non-const methods require exclusive access to the object. class OpenSlesOutput : public PlayoutDelayProvider { public: explicit OpenSlesOutput(const int32_t id); virtual ~OpenSlesOutput(); static int32_t SetAndroidAudioDeviceObjects(void* javaVM, void* env, void* context); static void ClearAndroidAudioDeviceObjects(); // Main initializaton and termination int32_t Init(); int32_t Terminate(); bool Initialized() const { return initialized_; } // Device enumeration int16_t PlayoutDevices() { return 1; } int32_t PlayoutDeviceName(uint16_t index, char name[kAdmMaxDeviceNameSize], char guid[kAdmMaxGuidSize]); // Device selection int32_t SetPlayoutDevice(uint16_t index); int32_t SetPlayoutDevice( AudioDeviceModule::WindowsDeviceType device) { return 0; } // No-op int32_t SetPlayoutSampleRate(uint32_t sample_rate_hz) { return 0; } // Audio transport initialization int32_t PlayoutIsAvailable(bool& available); // NOLINT int32_t InitPlayout(); bool PlayoutIsInitialized() const { return play_initialized_; } // Audio transport control int32_t StartPlayout(); int32_t StopPlayout(); bool Playing() const { return playing_; } // Audio mixer initialization int32_t InitSpeaker(); bool SpeakerIsInitialized() const { return speaker_initialized_; } // Speaker volume controls int32_t SpeakerVolumeIsAvailable(bool& available); // NOLINT int32_t SetSpeakerVolume(uint32_t volume); int32_t SpeakerVolume(uint32_t& volume) const { return 0; } // NOLINT int32_t MaxSpeakerVolume(uint32_t& maxVolume) const; // NOLINT int32_t MinSpeakerVolume(uint32_t& minVolume) const; // NOLINT int32_t SpeakerVolumeStepSize(uint16_t& stepSize) const; // NOLINT // Speaker mute control int32_t SpeakerMuteIsAvailable(bool& available); // NOLINT int32_t SetSpeakerMute(bool enable) { return -1; } int32_t SpeakerMute(bool& enabled) const { return -1; } // NOLINT // Stereo support int32_t StereoPlayoutIsAvailable(bool& available); // NOLINT int32_t SetStereoPlayout(bool enable); int32_t StereoPlayout(bool& enabled) const; // NOLINT // Delay information and control int32_t SetPlayoutBuffer(const AudioDeviceModule::BufferType type, uint16_t sizeMS) { return -1; } int32_t PlayoutBuffer(AudioDeviceModule::BufferType& type, // NOLINT uint16_t& sizeMS) const; int32_t PlayoutDelay(uint16_t& delayMS) const; // NOLINT // Error and warning information bool PlayoutWarning() const { return false; } bool PlayoutError() const { return false; } void ClearPlayoutWarning() {} void ClearPlayoutError() {} // Attach audio buffer void AttachAudioBuffer(AudioDeviceBuffer* audioBuffer); // Speaker audio routing int32_t SetLoudspeakerStatus(bool enable); int32_t GetLoudspeakerStatus(bool& enable) const; // NOLINT protected: virtual int PlayoutDelayMs(); private: enum { kNumInterfaces = 3, // TODO(xians): Reduce the numbers of buffers to improve the latency. // Currently 30ms worth of buffers are needed due to audio // pipeline processing jitter. Note: kNumOpenSlBuffers must // not be changed. // According to the opensles documentation in the ndk: // The lower output latency path is used only if the application requests a // buffer count of 2 or more. Use minimum number of buffers to keep delay // as low as possible. kNumOpenSlBuffers = 2, // NetEq delivers frames on a 10ms basis. This means that every 10ms there // will be a time consuming task. Keeping 10ms worth of buffers will ensure // that there is 10ms to perform the time consuming task without running // into underflow. // In addition to the 10ms that needs to be stored for NetEq processing // there will be jitter in audio pipe line due to the acquisition of locks. // Note: The buffers in the OpenSL queue do not count towards the 10ms of // frames needed since OpenSL needs to have them ready for playout. kNum10MsToBuffer = 6, }; bool InitSampleRate(); bool SetLowLatency(); void UpdatePlayoutDelay(); // It might be possible to dynamically add or remove buffers based on how // close to depletion the fifo is. Few buffers means low delay. Too few // buffers will cause underrun. Dynamically changing the number of buffer // will greatly increase code complexity. void CalculateNumFifoBuffersNeeded(); void AllocateBuffers(); int TotalBuffersUsed() const; bool EnqueueAllBuffers(); // This function also configures the audio player, e.g. sample rate to use // etc, so it should be called when starting playout. bool CreateAudioPlayer(); void DestroyAudioPlayer(); // When underrun happens there won't be a new frame ready for playout that // can be retrieved yet. Since the OpenSL thread must return ASAP there will // be one less queue available to OpenSL. This function handles this case // gracefully by restarting the audio, pushing silent frames to OpenSL for // playout. This will sound like a click. Underruns are also logged to // make it possible to identify these types of audio artifacts. // This function returns true if there has been underrun. Further processing // of audio data should be avoided until this function returns false again. // The function needs to be protected by |crit_sect_|. bool HandleUnderrun(int event_id, int event_msg); static void PlayerSimpleBufferQueueCallback( SLAndroidSimpleBufferQueueItf queueItf, void* pContext); // This function must not take any locks or do any heavy work. It is a // requirement for the OpenSL implementation to work as intended. The reason // for this is that taking locks exposes the OpenSL thread to the risk of // priority inversion. void PlayerSimpleBufferQueueCallbackHandler( SLAndroidSimpleBufferQueueItf queueItf); bool StartCbThreads(); void StopCbThreads(); static bool CbThread(void* context); // This function must be protected against data race with threads calling this // class' public functions. It is a requirement for this class to be // Thread-compatible. bool CbThreadImpl(); // Java API handle AudioManagerJni audio_manager_; int id_; bool initialized_; bool speaker_initialized_; bool play_initialized_; // Members that are read/write accessed concurrently by the process thread and // threads calling public functions of this class. scoped_ptr play_thread_; // Processing thread scoped_ptr crit_sect_; // This member controls the starting and stopping of playing audio to the // the device. bool playing_; // Only one thread, T1, may push and only one thread, T2, may pull. T1 may or // may not be the same thread as T2. T1 is the process thread and T2 is the // OpenSL thread. scoped_ptr fifo_; int num_fifo_buffers_needed_; LowLatencyEvent event_; int number_underruns_; // OpenSL handles SLObjectItf sles_engine_; SLEngineItf sles_engine_itf_; SLObjectItf sles_player_; SLPlayItf sles_player_itf_; SLAndroidSimpleBufferQueueItf sles_player_sbq_itf_; SLObjectItf sles_output_mixer_; // Audio buffers AudioDeviceBuffer* audio_buffer_; scoped_ptr fine_buffer_; scoped_ptr[]> play_buf_; // Index in |rec_buf_| pointing to the audio buffer that will be ready the // next time PlayerSimpleBufferQueueCallbackHandler is invoked. // Ready means buffer is ready to be played out to device. int active_queue_; // Audio settings uint32_t speaker_sampling_rate_; int buffer_size_samples_; int buffer_size_bytes_; // Audio status uint16_t playout_delay_; }; } // namespace webrtc #endif // WEBRTC_MODULES_AUDIO_DEVICE_ANDROID_OPENSLES_OUTPUT_H_