/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "webrtc/api/video/i420_buffer.h" #include "webrtc/base/fakeclock.h" #include "webrtc/base/logging.h" #include "webrtc/media/base/videoadapter.h" #include "webrtc/modules/video_coding/codecs/vp8/temporal_layers.h" #include "webrtc/modules/video_coding/utility/default_video_bitrate_allocator.h" #include "webrtc/system_wrappers/include/metrics_default.h" #include "webrtc/system_wrappers/include/sleep.h" #include "webrtc/test/encoder_settings.h" #include "webrtc/test/fake_encoder.h" #include "webrtc/test/frame_generator.h" #include "webrtc/test/gmock.h" #include "webrtc/test/gtest.h" #include "webrtc/video/send_statistics_proxy.h" #include "webrtc/video/vie_encoder.h" namespace { #if defined(WEBRTC_ANDROID) // TODO(kthelgason): Lower this limit when better testing // on MediaCodec and fallback implementations are in place. const int kMinPixelsPerFrame = 320 * 180; #else const int kMinPixelsPerFrame = 120 * 90; #endif const int kMinFramerateFps = 2; const int64_t kFrameTimeoutMs = 100; } // namespace namespace webrtc { using DegredationPreference = VideoSendStream::DegradationPreference; using ScaleReason = AdaptationObserverInterface::AdaptReason; using ::testing::_; using ::testing::Return; namespace { const size_t kMaxPayloadLength = 1440; const int kTargetBitrateBps = 1000000; const int kLowTargetBitrateBps = kTargetBitrateBps / 10; const int kMaxInitialFramedrop = 4; class TestBuffer : public webrtc::I420Buffer { public: TestBuffer(rtc::Event* event, int width, int height) : I420Buffer(width, height), event_(event) {} private: friend class rtc::RefCountedObject; ~TestBuffer() override { if (event_) event_->Set(); } rtc::Event* const event_; }; class ViEEncoderUnderTest : public ViEEncoder { public: ViEEncoderUnderTest(SendStatisticsProxy* stats_proxy, const VideoSendStream::Config::EncoderSettings& settings) : ViEEncoder(1 /* number_of_cores */, stats_proxy, settings, nullptr /* pre_encode_callback */, nullptr /* encoder_timing */) {} void PostTaskAndWait(bool down, AdaptReason reason) { rtc::Event event(false, false); encoder_queue()->PostTask([this, &event, reason, down] { down ? AdaptDown(reason) : AdaptUp(reason); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } // This is used as a synchronisation mechanism, to make sure that the // encoder queue is not blocked before we start sending it frames. void WaitUntilTaskQueueIsIdle() { rtc::Event event(false, false); encoder_queue()->PostTask([&event] { event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } void TriggerCpuOveruse() { PostTaskAndWait(true, AdaptReason::kCpu); } void TriggerCpuNormalUsage() { PostTaskAndWait(false, AdaptReason::kCpu); } void TriggerQualityLow() { PostTaskAndWait(true, AdaptReason::kQuality); } void TriggerQualityHigh() { PostTaskAndWait(false, AdaptReason::kQuality); } }; class VideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: explicit VideoStreamFactory(size_t num_temporal_layers) : num_temporal_layers_(num_temporal_layers) { EXPECT_GT(num_temporal_layers, 0u); } private: std::vector CreateEncoderStreams( int width, int height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams(width, height, encoder_config); for (VideoStream& stream : streams) { stream.temporal_layer_thresholds_bps.resize(num_temporal_layers_ - 1); } return streams; } const size_t num_temporal_layers_; }; class AdaptingFrameForwarder : public test::FrameForwarder { public: AdaptingFrameForwarder() : adaptation_enabled_(false) {} virtual ~AdaptingFrameForwarder() {} void set_adaptation_enabled(bool enabled) { rtc::CritScope cs(&crit_); adaptation_enabled_ = enabled; } bool adaption_enabled() { rtc::CritScope cs(&crit_); return adaptation_enabled_; } void IncomingCapturedFrame(const VideoFrame& video_frame) override { int cropped_width = 0; int cropped_height = 0; int out_width = 0; int out_height = 0; if (adaption_enabled()) { if (adapter_.AdaptFrameResolution( video_frame.width(), video_frame.height(), video_frame.timestamp_us() * 1000, &cropped_width, &cropped_height, &out_width, &out_height)) { VideoFrame adapted_frame(new rtc::RefCountedObject( nullptr, out_width, out_height), 99, 99, kVideoRotation_0); adapted_frame.set_ntp_time_ms(video_frame.ntp_time_ms()); test::FrameForwarder::IncomingCapturedFrame(adapted_frame); } } else { test::FrameForwarder::IncomingCapturedFrame(video_frame); } } void AddOrUpdateSink(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override { rtc::CritScope cs(&crit_); adapter_.OnResolutionFramerateRequest(wants.target_pixel_count, wants.max_pixel_count, wants.max_framerate_fps); test::FrameForwarder::AddOrUpdateSink(sink, wants); } cricket::VideoAdapter adapter_; bool adaptation_enabled_ GUARDED_BY(crit_); }; class MockableSendStatisticsProxy : public SendStatisticsProxy { public: MockableSendStatisticsProxy(Clock* clock, const VideoSendStream::Config& config, VideoEncoderConfig::ContentType content_type) : SendStatisticsProxy(clock, config, content_type) {} VideoSendStream::Stats GetStats() override { rtc::CritScope cs(&lock_); if (mock_stats_) return *mock_stats_; return SendStatisticsProxy::GetStats(); } void SetMockStats(const VideoSendStream::Stats& stats) { rtc::CritScope cs(&lock_); mock_stats_.emplace(stats); } void ResetMockStats() { rtc::CritScope cs(&lock_); mock_stats_.reset(); } private: rtc::CriticalSection lock_; rtc::Optional mock_stats_ GUARDED_BY(lock_); }; } // namespace class ViEEncoderTest : public ::testing::Test { public: static const int kDefaultTimeoutMs = 30 * 1000; ViEEncoderTest() : video_send_config_(VideoSendStream::Config(nullptr)), codec_width_(320), codec_height_(240), fake_encoder_(), stats_proxy_(new MockableSendStatisticsProxy( Clock::GetRealTimeClock(), video_send_config_, webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo)), sink_(&fake_encoder_) {} void SetUp() override { metrics::Reset(); video_send_config_ = VideoSendStream::Config(nullptr); video_send_config_.encoder_settings.encoder = &fake_encoder_; video_send_config_.encoder_settings.payload_name = "FAKE"; video_send_config_.encoder_settings.payload_type = 125; VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(1, &video_encoder_config); video_encoder_config_ = video_encoder_config.Copy(); ConfigureEncoder(std::move(video_encoder_config), true /* nack_enabled */); } void ConfigureEncoder(VideoEncoderConfig video_encoder_config, bool nack_enabled) { if (vie_encoder_) vie_encoder_->Stop(); vie_encoder_.reset(new ViEEncoderUnderTest( stats_proxy_.get(), video_send_config_.encoder_settings)); vie_encoder_->SetSink(&sink_, false /* rotation_applied */); vie_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainFramerate); vie_encoder_->SetStartBitrate(kTargetBitrateBps); vie_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, nack_enabled); vie_encoder_->WaitUntilTaskQueueIsIdle(); } void ResetEncoder(const std::string& payload_name, size_t num_streams, size_t num_temporal_layers, bool nack_enabled) { video_send_config_.encoder_settings.payload_name = payload_name; VideoEncoderConfig video_encoder_config; video_encoder_config.number_of_streams = num_streams; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(num_temporal_layers); ConfigureEncoder(std::move(video_encoder_config), nack_enabled); } VideoFrame CreateFrame(int64_t ntp_time_ms, rtc::Event* destruction_event) const { VideoFrame frame(new rtc::RefCountedObject( destruction_event, codec_width_, codec_height_), 99, 99, kVideoRotation_0); frame.set_ntp_time_ms(ntp_time_ms); return frame; } VideoFrame CreateFrame(int64_t ntp_time_ms, int width, int height) const { VideoFrame frame( new rtc::RefCountedObject(nullptr, width, height), 99, 99, kVideoRotation_0); frame.set_ntp_time_ms(ntp_time_ms); frame.set_timestamp_us(ntp_time_ms * 1000); return frame; } class TestEncoder : public test::FakeEncoder { public: TestEncoder() : FakeEncoder(Clock::GetRealTimeClock()), continue_encode_event_(false, false) {} VideoCodec codec_config() { rtc::CritScope lock(&crit_sect_); return config_; } void BlockNextEncode() { rtc::CritScope lock(&local_crit_sect_); block_next_encode_ = true; } VideoEncoder::ScalingSettings GetScalingSettings() const override { rtc::CritScope lock(&local_crit_sect_); if (quality_scaling_) return VideoEncoder::ScalingSettings(true, 1, 2); return VideoEncoder::ScalingSettings(false); } void ContinueEncode() { continue_encode_event_.Set(); } void CheckLastTimeStampsMatch(int64_t ntp_time_ms, uint32_t timestamp) const { rtc::CritScope lock(&local_crit_sect_); EXPECT_EQ(timestamp_, timestamp); EXPECT_EQ(ntp_time_ms_, ntp_time_ms); } void SetQualityScaling(bool b) { rtc::CritScope lock(&local_crit_sect_); quality_scaling_ = b; } void ForceInitEncodeFailure(bool force_failure) { rtc::CritScope lock(&local_crit_sect_); force_init_encode_failed_ = force_failure; } private: int32_t Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) override { bool block_encode; { rtc::CritScope lock(&local_crit_sect_); EXPECT_GT(input_image.timestamp(), timestamp_); EXPECT_GT(input_image.ntp_time_ms(), ntp_time_ms_); EXPECT_EQ(input_image.timestamp(), input_image.ntp_time_ms() * 90); timestamp_ = input_image.timestamp(); ntp_time_ms_ = input_image.ntp_time_ms(); last_input_width_ = input_image.width(); last_input_height_ = input_image.height(); block_encode = block_next_encode_; block_next_encode_ = false; } int32_t result = FakeEncoder::Encode(input_image, codec_specific_info, frame_types); if (block_encode) EXPECT_TRUE(continue_encode_event_.Wait(kDefaultTimeoutMs)); return result; } int32_t InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) override { int res = FakeEncoder::InitEncode(config, number_of_cores, max_payload_size); rtc::CritScope lock(&local_crit_sect_); if (config->codecType == kVideoCodecVP8 && config->VP8().tl_factory) { // Simulate setting up temporal layers, in order to validate the life // cycle of these objects. int num_streams = std::max(1, config->numberOfSimulcastStreams); int num_temporal_layers = std::max(1, config->VP8().numberOfTemporalLayers); for (int i = 0; i < num_streams; ++i) { allocated_temporal_layers_.emplace_back( config->VP8().tl_factory->Create(i, num_temporal_layers, 42)); } } if (force_init_encode_failed_) return -1; return res; } rtc::CriticalSection local_crit_sect_; bool block_next_encode_ GUARDED_BY(local_crit_sect_) = false; rtc::Event continue_encode_event_; uint32_t timestamp_ GUARDED_BY(local_crit_sect_) = 0; int64_t ntp_time_ms_ GUARDED_BY(local_crit_sect_) = 0; int last_input_width_ GUARDED_BY(local_crit_sect_) = 0; int last_input_height_ GUARDED_BY(local_crit_sect_) = 0; bool quality_scaling_ GUARDED_BY(local_crit_sect_) = true; std::vector> allocated_temporal_layers_ GUARDED_BY(local_crit_sect_); bool force_init_encode_failed_ GUARDED_BY(local_crit_sect_) = false; }; class TestSink : public ViEEncoder::EncoderSink { public: explicit TestSink(TestEncoder* test_encoder) : test_encoder_(test_encoder), encoded_frame_event_(false, false) {} void WaitForEncodedFrame(int64_t expected_ntp_time) { uint32_t timestamp = 0; EXPECT_TRUE(encoded_frame_event_.Wait(kDefaultTimeoutMs)); { rtc::CritScope lock(&crit_); timestamp = last_timestamp_; } test_encoder_->CheckLastTimeStampsMatch(expected_ntp_time, timestamp); } void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) { EXPECT_TRUE(encoded_frame_event_.Wait(kDefaultTimeoutMs)); CheckLastFrameSizeMathces(expected_width, expected_height); } void CheckLastFrameSizeMathces(uint32_t expected_width, uint32_t expected_height) { uint32_t width = 0; uint32_t height = 0; { rtc::CritScope lock(&crit_); width = last_width_; height = last_height_; } EXPECT_EQ(expected_height, height); EXPECT_EQ(expected_width, width); } void ExpectDroppedFrame() { EXPECT_FALSE(encoded_frame_event_.Wait(100)); } bool WaitForFrame(int64_t timeout_ms) { return encoded_frame_event_.Wait(timeout_ms); } void SetExpectNoFrames() { rtc::CritScope lock(&crit_); expect_frames_ = false; } int number_of_reconfigurations() { rtc::CritScope lock(&crit_); return number_of_reconfigurations_; } int last_min_transmit_bitrate() { rtc::CritScope lock(&crit_); return min_transmit_bitrate_bps_; } private: Result OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) override { rtc::CritScope lock(&crit_); EXPECT_TRUE(expect_frames_); last_timestamp_ = encoded_image._timeStamp; last_width_ = encoded_image._encodedWidth; last_height_ = encoded_image._encodedHeight; encoded_frame_event_.Set(); return Result(Result::OK, last_timestamp_); } void OnEncoderConfigurationChanged(std::vector streams, int min_transmit_bitrate_bps) override { rtc::CriticalSection crit_; ++number_of_reconfigurations_; min_transmit_bitrate_bps_ = min_transmit_bitrate_bps; } rtc::CriticalSection crit_; TestEncoder* test_encoder_; rtc::Event encoded_frame_event_; uint32_t last_timestamp_ = 0; uint32_t last_height_ = 0; uint32_t last_width_ = 0; bool expect_frames_ = true; int number_of_reconfigurations_ = 0; int min_transmit_bitrate_bps_ = 0; }; VideoSendStream::Config video_send_config_; VideoEncoderConfig video_encoder_config_; int codec_width_; int codec_height_; TestEncoder fake_encoder_; std::unique_ptr stats_proxy_; TestSink sink_; AdaptingFrameForwarder video_source_; std::unique_ptr vie_encoder_; }; TEST_F(ViEEncoderTest, EncodeOneFrame) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); rtc::Event frame_destroyed_event(false, false); video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); sink_.WaitForEncodedFrame(1); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, DropsFramesBeforeFirstOnBitrateUpdated) { // Dropped since no target bitrate has been set. rtc::Event frame_destroyed_event(false, false); video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); sink_.WaitForEncodedFrame(2); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, DropsFramesWhenRateSetToZero) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); vie_encoder_->OnBitrateUpdated(0, 0, 0); // Dropped since bitrate is zero. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); sink_.WaitForEncodedFrame(3); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, DropsFramesWithSameOrOldNtpTimestamp) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // This frame will be dropped since it has the same ntp timestamp. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); sink_.WaitForEncodedFrame(2); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, DropsFrameAfterStop) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); vie_encoder_->Stop(); sink_.SetExpectNoFrames(); rtc::Event frame_destroyed_event(false, false); video_source_.IncomingCapturedFrame(CreateFrame(2, &frame_destroyed_event)); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); } TEST_F(ViEEncoderTest, DropsPendingFramesOnSlowEncode) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); fake_encoder_.BlockNextEncode(); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // Here, the encoder thread will be blocked in the TestEncoder waiting for a // call to ContinueEncode. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); fake_encoder_.ContinueEncode(); sink_.WaitForEncodedFrame(3); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, ConfigureEncoderTriggersOnEncoderConfigurationChanged) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); EXPECT_EQ(0, sink_.number_of_reconfigurations()); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder will have been configured once when the first frame is // received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(1, &video_encoder_config); video_encoder_config.min_transmit_bitrate_bps = 9999; vie_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength, true /* nack_enabled */); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); sink_.WaitForEncodedFrame(2); EXPECT_EQ(2, sink_.number_of_reconfigurations()); EXPECT_EQ(9999, sink_.last_min_transmit_bitrate()); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, FrameResolutionChangeReconfigureEncoder) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder will have been configured once. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width); EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height); codec_width_ *= 2; codec_height_ *= 2; // Capture a frame with a higher resolution and wait for it to synchronize // with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); sink_.WaitForEncodedFrame(2); EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width); EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height); EXPECT_EQ(2, sink_.number_of_reconfigurations()); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, Vp8ResilienceIsOffFor1S1TLWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 1; const size_t kNumTl = 1; ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled); vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is off for no temporal layers with nack on. EXPECT_EQ(kResilienceOff, fake_encoder_.codec_config().VP8()->resilience); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, Vp8ResilienceIsOffFor2S1TlWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 2; const size_t kNumTl = 1; ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled); vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is off for no temporal layers and >1 streams with nack on. EXPECT_EQ(kResilienceOff, fake_encoder_.codec_config().VP8()->resilience); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, Vp8ResilienceIsOnFor1S1TLWithNackDisabled) { const bool kNackEnabled = false; const size_t kNumStreams = 1; const size_t kNumTl = 1; ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled); vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is on for no temporal layers with nack off. EXPECT_EQ(kResilientStream, fake_encoder_.codec_config().VP8()->resilience); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, Vp8ResilienceIsOnFor1S2TlWithNackEnabled) { const bool kNackEnabled = true; const size_t kNumStreams = 1; const size_t kNumTl = 2; ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled); vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); sink_.WaitForEncodedFrame(1); // The encoder have been configured once when the first frame is received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType); EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams); EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers); // Resilience is on for temporal layers. EXPECT_EQ(kResilientStream, fake_encoder_.codec_config().VP8()->resilience); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, SwitchSourceDeregisterEncoderAsSink) { EXPECT_TRUE(video_source_.has_sinks()); test::FrameForwarder new_video_source; vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); EXPECT_FALSE(video_source_.has_sinks()); EXPECT_TRUE(new_video_source.has_sinks()); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, SinkWantsRotationApplied) { EXPECT_FALSE(video_source_.sink_wants().rotation_applied); vie_encoder_->SetSink(&sink_, true /*rotation_applied*/); EXPECT_TRUE(video_source_.sink_wants().rotation_applied); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, SinkWantsFromOveruseDetector) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_pixel_count); int frame_width = 1280; int frame_height = 720; // Trigger CPU overuse kMaxCpuDowngrades times. Every time, ViEEncoder should // request lower resolution. for (int i = 1; i <= ViEEncoder::kMaxCpuResolutionDowngrades; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(i, frame_width, frame_height)); sink_.WaitForEncodedFrame(i); vie_encoder_->TriggerCpuOveruse(); EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, frame_width * frame_height); frame_width /= 2; frame_height /= 2; } // Trigger CPU overuse one more time. This should not trigger a request for // lower resolution. rtc::VideoSinkWants current_wants = video_source_.sink_wants(); video_source_.IncomingCapturedFrame(CreateFrame( ViEEncoder::kMaxCpuResolutionDowngrades + 1, frame_width, frame_height)); sink_.WaitForEncodedFrame(ViEEncoder::kMaxCpuResolutionDowngrades + 1); vie_encoder_->TriggerCpuOveruse(); EXPECT_EQ(video_source_.sink_wants().target_pixel_count, current_wants.target_pixel_count); EXPECT_EQ(video_source_.sink_wants().max_pixel_count, current_wants.max_pixel_count); // Trigger CPU normal use. vie_encoder_->TriggerCpuNormalUsage(); EXPECT_EQ(frame_width * frame_height * 5 / 3, video_source_.sink_wants().target_pixel_count.value_or(0)); EXPECT_EQ(frame_width * frame_height * 4, video_source_.sink_wants().max_pixel_count); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, SinkWantsStoredByDegradationPreference) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_framerate_fps); const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFrameIntervalMs = 1000 / 30; int frame_timestamp = 1; video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Trigger CPU overuse. vie_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Default degradation preference in maintain-framerate, so will lower max // wanted resolution. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_framerate_fps); // Set new source, switch to maintain-resolution. test::FrameForwarder new_video_source; vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); // Initially no degradation registered. EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_framerate_fps); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt form. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = 30; stats_proxy_->SetMockStats(stats); vie_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Some framerate constraint should be set. EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_TRUE(new_video_source.sink_wants().max_framerate_fps); // Turn of degradation completely. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kDegradationDisabled); // Initially no degradation registered. EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_framerate_fps); vie_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Still no degradation. EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_framerate_fps); // Calling SetSource with resolution scaling enabled apply the old SinkWants. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); EXPECT_LT(new_video_source.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_framerate_fps); // Calling SetSource with framerate scaling enabled apply the old SinkWants. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_TRUE(new_video_source.sink_wants().max_framerate_fps); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, StatsTracksAdaptationStats) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); int frame_width = 1280; int frame_height = 720; video_source_.IncomingCapturedFrame( CreateFrame(1, frame_width, frame_height)); sink_.WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse. vie_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2, frame_width, frame_height)); sink_.WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Trigger CPU normal use. vie_encoder_->TriggerCpuNormalUsage(); video_source_.IncomingCapturedFrame( CreateFrame(3, frame_width, frame_height)); sink_.WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, SwitchingSourceKeepsCpuAdaptation) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); int frame_width = 1280; int frame_height = 720; video_source_.IncomingCapturedFrame( CreateFrame(1, frame_width, frame_height)); sink_.WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); vie_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2, frame_width, frame_height)); sink_.WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); new_video_source.IncomingCapturedFrame( CreateFrame(3, frame_width, frame_height)); sink_.WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation disabled. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kDegradationDisabled); new_video_source.IncomingCapturedFrame( CreateFrame(4, frame_width, frame_height)); sink_.WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation back to enabled. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); new_video_source.IncomingCapturedFrame( CreateFrame(5, frame_width, frame_height)); sink_.WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); vie_encoder_->TriggerCpuNormalUsage(); new_video_source.IncomingCapturedFrame( CreateFrame(6, frame_width, frame_height)); sink_.WaitForEncodedFrame(6); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, SwitchingSourceKeepsQualityAdaptation) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); int frame_width = 1280; int frame_height = 720; video_source_.IncomingCapturedFrame( CreateFrame(1, frame_width, frame_height)); sink_.WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; vie_encoder_->SetSource(&new_video_source, VideoSendStream::DegradationPreference::kBalanced); new_video_source.IncomingCapturedFrame( CreateFrame(2, frame_width, frame_height)); sink_.WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); vie_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame( CreateFrame(3, frame_width, frame_height)); sink_.WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.bw_limited_resolution); vie_encoder_->SetSource(&new_video_source, VideoSendStream::DegradationPreference::kBalanced); new_video_source.IncomingCapturedFrame( CreateFrame(4, frame_width, frame_height)); sink_.WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.bw_limited_resolution); // Set adaptation disabled. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); new_video_source.IncomingCapturedFrame( CreateFrame(5, frame_width, frame_height)); sink_.WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.bw_limited_resolution); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, QualityAdaptationStatsAreResetWhenScalerIsDisabled) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(1); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down. vie_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger overuse. vie_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); sink_.WaitForEncodedFrame(3); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Set source with adaptation still enabled but quality scaler is off. fake_encoder_.SetQualityScaling(false); vie_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainFramerate); video_source_.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); sink_.WaitForEncodedFrame(4); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, StatsTracksAdaptationStatsWhenSwitchingSource) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); int frame_width = 1280; int frame_height = 720; int sequence = 1; video_source_.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse again, should now adapt down. vie_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainFramerate); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set cpu adaptation by frame dropping. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Not adapted at first. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt form. VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = 30; stats_proxy_->SetMockStats(mock_stats); vie_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); // Framerate now adapted. stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Disable CPU adaptation. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kDegradationDisabled); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Try to trigger overuse. Should not succeed. stats_proxy_->SetMockStats(mock_stats); vie_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Switch back the source with resolution adaptation enabled. vie_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainFramerate); video_source_.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. vie_encoder_->TriggerCpuNormalUsage(); video_source_.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Back to the source with adaptation off, set it back to maintain-resolution. vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Disabled, since we previously switched the source too disabled. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. vie_encoder_->TriggerCpuNormalUsage(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, frame_width, frame_height)); sink_.WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(4, stats.number_of_cpu_adapt_changes); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, StatsTracksPreferredBitrate) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); sink_.WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_EQ(video_encoder_config_.max_bitrate_bps, stats.preferred_media_bitrate_bps); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, ScalingUpAndDownDoesNothingWithMaintainResolution) { int frame_width = 1280; int frame_height = 720; vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); // Expect no scaling to begin with EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_pixel_count); video_source_.IncomingCapturedFrame( CreateFrame(1, frame_width, frame_height)); sink_.WaitForEncodedFrame(1); // Trigger scale down vie_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame( CreateFrame(2, frame_width, frame_height)); sink_.WaitForEncodedFrame(2); // Expect a scale down. EXPECT_TRUE(video_source_.sink_wants().max_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, frame_width * frame_height); // Set adaptation disabled. test::FrameForwarder new_video_source; vie_encoder_->SetSource( &new_video_source, VideoSendStream::DegradationPreference::kMaintainResolution); // Trigger scale down vie_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame( CreateFrame(3, frame_width, frame_height)); sink_.WaitForEncodedFrame(3); // Expect no scaling EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); // Trigger scale up vie_encoder_->TriggerQualityHigh(); new_video_source.IncomingCapturedFrame( CreateFrame(4, frame_width, frame_height)); sink_.WaitForEncodedFrame(4); // Expect nothing to change, still no scaling EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, DoesNotScaleBelowSetLimit) { int frame_width = 1280; int frame_height = 720; vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); for (size_t i = 1; i <= 10; i++) { video_source_.IncomingCapturedFrame( CreateFrame(i, frame_width, frame_height)); sink_.WaitForEncodedFrame(i); // Trigger scale down vie_encoder_->TriggerQualityLow(); EXPECT_GE(video_source_.sink_wants().max_pixel_count, kMinPixelsPerFrame); } vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, UMACpuLimitedResolutionInPercent) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); int frame_width = 640; int frame_height = 360; for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(i, frame_width, frame_height)); sink_.WaitForEncodedFrame(i); } vie_encoder_->TriggerCpuOveruse(); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i, frame_width, frame_height)); sink_.WaitForEncodedFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i); } vie_encoder_->Stop(); vie_encoder_.reset(); stats_proxy_.reset(); EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent")); EXPECT_EQ( 1, metrics::NumEvents("WebRTC.Video.CpuLimitedResolutionInPercent", 50)); } TEST_F(ViEEncoderTest, CallsBitrateObserver) { class MockBitrateObserver : public VideoBitrateAllocationObserver { public: MOCK_METHOD1(OnBitrateAllocationUpdated, void(const BitrateAllocation&)); } bitrate_observer; vie_encoder_->SetBitrateObserver(&bitrate_observer); const int kDefaultFps = 30; const BitrateAllocation expected_bitrate = DefaultVideoBitrateAllocator(fake_encoder_.codec_config()) .GetAllocation(kLowTargetBitrateBps, kDefaultFps); // First called on bitrate updated, then again on first frame. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(2); vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0); const int64_t kStartTimeMs = 1; video_source_.IncomingCapturedFrame( CreateFrame(kStartTimeMs, codec_width_, codec_height_)); sink_.WaitForEncodedFrame(kStartTimeMs); // Not called on second frame. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(0); video_source_.IncomingCapturedFrame( CreateFrame(kStartTimeMs + 1, codec_width_, codec_height_)); sink_.WaitForEncodedFrame(kStartTimeMs + 1); // Called after a process interval. const int64_t kProcessIntervalMs = vcm::VCMProcessTimer::kDefaultProcessIntervalMs; // TODO(sprang): ViEEncoder should die and/or get injectable clock. // Sleep for one processing interval plus one frame to avoid flakiness. SleepMs(kProcessIntervalMs + 1000 / kDefaultFps); EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(1); video_source_.IncomingCapturedFrame(CreateFrame( kStartTimeMs + kProcessIntervalMs, codec_width_, codec_height_)); sink_.WaitForEncodedFrame(kStartTimeMs + kProcessIntervalMs); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, DropsFramesAndScalesWhenBitrateIsTooLow) { vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0); int frame_width = 640; int frame_height = 360; video_source_.IncomingCapturedFrame( CreateFrame(1, frame_width, frame_height)); // Expect to drop this frame, the wait should time out. sink_.ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_LT(video_source_.sink_wants().max_pixel_count, 1000 * 1000); int last_pixel_count = video_source_.sink_wants().max_pixel_count; // Next frame is scaled video_source_.IncomingCapturedFrame( CreateFrame(2, frame_width * 3 / 4, frame_height * 3 / 4)); // Expect to drop this frame, the wait should time out. sink_.ExpectDroppedFrame(); EXPECT_LT(video_source_.sink_wants().max_pixel_count, last_pixel_count); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, NrOfDroppedFramesLimited) { // 1kbps. This can never be achieved. vie_encoder_->OnBitrateUpdated(1000, 0, 0); int frame_width = 640; int frame_height = 360; // We expect the n initial frames to get dropped. int i; for (i = 1; i <= kMaxInitialFramedrop; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(i, frame_width, frame_height)); sink_.ExpectDroppedFrame(); } // The n+1th frame should not be dropped, even though it's size is too large. video_source_.IncomingCapturedFrame( CreateFrame(i, frame_width, frame_height)); sink_.WaitForEncodedFrame(i); // Expect the sink_wants to specify a scaled frame. EXPECT_LT(video_source_.sink_wants().max_pixel_count, 1000 * 1000); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, InitialFrameDropOffWithMaintainResolutionPreference) { int frame_width = 640; int frame_height = 360; vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0); // Set degradation preference. vie_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainResolution); video_source_.IncomingCapturedFrame( CreateFrame(1, frame_width, frame_height)); // Frame should not be dropped, even if it's too large. sink_.WaitForEncodedFrame(1); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, InitialFrameDropOffWhenEncoderDisabledScaling) { int frame_width = 640; int frame_height = 360; fake_encoder_.SetQualityScaling(false); vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0); // Force quality scaler reconfiguration by resetting the source. vie_encoder_->SetSource(&video_source_, VideoSendStream::DegradationPreference::kBalanced); video_source_.IncomingCapturedFrame( CreateFrame(1, frame_width, frame_height)); // Frame should not be dropped, even if it's too large. sink_.WaitForEncodedFrame(1); vie_encoder_->Stop(); fake_encoder_.SetQualityScaling(true); } // TODO(sprang): Extend this with fps throttling and any "balanced" extensions. TEST_F(ViEEncoderTest, AdaptsResolutionOnOveruse) { vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); const int kFrameWidth = 1280; const int kFrameHeight = 720; // Enabled default VideoAdapter downscaling. First step is 3/4, not 3/5 as // requested by ViEEncoder::VideoSourceProxy::RequestResolutionLowerThan(). video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(kFrameWidth, kFrameHeight); // Trigger CPU overuse, downscale by 3/4. vie_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame((kFrameWidth * 3) / 4, (kFrameHeight * 3) / 4); // Trigger CPU normal use, return to original resolution; vie_encoder_->TriggerCpuNormalUsage(); video_source_.IncomingCapturedFrame( CreateFrame(3, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(kFrameWidth, kFrameHeight); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, FailingInitEncodeDoesntCauseCrash) { fake_encoder_.ForceInitEncodeFailure(true); vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); ResetEncoder("VP8", 2, 1, true); const int kFrameWidth = 1280; const int kFrameHeight = 720; video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); sink_.ExpectDroppedFrame(); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, AdaptsFrameOnOveruseWithMaintainResolution) { const int kDefaultFramerateFps = 30; const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kDefaultFramerateFps; const int kFrameWidth = 1280; const int kFrameHeight = 720; rtc::ScopedFakeClock fake_clock; vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); vie_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainResolution); video_source_.set_adaptation_enabled(true); fake_clock.SetTimeMicros(kFrameIntervalMs * 1000); int64_t timestamp_ms = kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(timestamp_ms); // Try to trigger overuse. No fps estimate available => no effect. vie_encoder_->TriggerCpuOveruse(); // Insert frames for one second to get a stable estimate. for (int i = 0; i < kDefaultFramerateFps; ++i) { timestamp_ms += kFrameIntervalMs; fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(timestamp_ms); } // Trigger CPU overuse, reduce framerate by 2/3. vie_encoder_->TriggerCpuOveruse(); int num_frames_dropped = 0; for (int i = 0; i < kDefaultFramerateFps; ++i) { timestamp_ms += kFrameIntervalMs; fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!sink_.WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } // TODO(sprang): Find where there's rounding errors or stuff causing the // margin here to be a little larger than we'd like (input fps estimate is // off) and the frame dropping is a little too aggressive. const int kErrorMargin = 5; EXPECT_NEAR(num_frames_dropped, kDefaultFramerateFps - (kDefaultFramerateFps * 2 / 3), kErrorMargin); // Trigger CPU overuse, reduce framerate by 2/3 again. vie_encoder_->TriggerCpuOveruse(); num_frames_dropped = 0; for (int i = 0; i < kDefaultFramerateFps; ++i) { timestamp_ms += kFrameIntervalMs; fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!sink_.WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, kDefaultFramerateFps - (kDefaultFramerateFps * 4 / 9), kErrorMargin); // Go back up one step. vie_encoder_->TriggerCpuNormalUsage(); num_frames_dropped = 0; for (int i = 0; i < kDefaultFramerateFps; ++i) { timestamp_ms += kFrameIntervalMs; fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!sink_.WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, kDefaultFramerateFps - (kDefaultFramerateFps * 2 / 3), kErrorMargin); // Go back up to original mode. vie_encoder_->TriggerCpuNormalUsage(); num_frames_dropped = 0; for (int i = 0; i < kDefaultFramerateFps; ++i) { timestamp_ms += kFrameIntervalMs; fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!sink_.WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, 0, kErrorMargin); vie_encoder_->Stop(); } TEST_F(ViEEncoderTest, DoesntAdaptDownPastMinFramerate) { const int kFramerateFps = 5; const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kFramerateFps; const int kMinFpsFrameInterval = rtc::kNumMillisecsPerSec / kMinFramerateFps; const int kFrameWidth = 1280; const int kFrameHeight = 720; rtc::ScopedFakeClock fake_clock; vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0); vie_encoder_->SetSource( &video_source_, VideoSendStream::DegradationPreference::kMaintainResolution); video_source_.set_adaptation_enabled(true); fake_clock.SetTimeMicros(kFrameIntervalMs * 1000); int64_t timestamp_ms = kFrameIntervalMs; // Trigger overuse as much as we can. for (int i = 0; i < ViEEncoder::kMaxCpuResolutionDowngrades; ++i) { // Insert frames to get a new fps estimate... for (int j = 0; j < kFramerateFps; ++j) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); timestamp_ms += kFrameIntervalMs; fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000); } // ...and then try to adapt again. vie_encoder_->TriggerCpuOveruse(); } // Drain any frame in the pipeline. sink_.WaitForFrame(kDefaultTimeoutMs); // Insert frames at min fps, all should go through. for (int i = 0; i < 10; ++i) { timestamp_ms += kMinFpsFrameInterval; fake_clock.AdvanceTimeMicros(kMinFpsFrameInterval * 1000); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(timestamp_ms); } vie_encoder_->Stop(); } } // namespace webrtc