This CL corrects the usage of the estimated echo path gain to not be hardcoded to 1. In order to retain the tuned behavior, the CL for now maintains the former behavior in the code. Bug: webrtc:9255,chromium:851187 Change-Id: I7f91c72e476680a8a854c22b74b1771fae446110 Reviewed-on: https://webrtc-review.googlesource.com/75510 Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org> Commit-Queue: Per Åhgren <peah@webrtc.org> Cr-Commit-Position: refs/heads/master@{#23190}
266 lines
9.3 KiB
C++
266 lines
9.3 KiB
C++
|
|
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
|
|
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
bool EnableSoftTransparentMode() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3SoftTransparentModeKillSwitch");
|
|
}
|
|
|
|
bool OverrideEstimatedEchoPathGain() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3OverrideEchoPathGainKillSwitch");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config)
|
|
: config_(config),
|
|
S2_old_(config_.filter.main.length_blocks),
|
|
soft_transparent_mode_(EnableSoftTransparentMode()),
|
|
override_estimated_echo_path_gain_(OverrideEstimatedEchoPathGain()) {
|
|
Reset();
|
|
}
|
|
|
|
ResidualEchoEstimator::~ResidualEchoEstimator() = default;
|
|
|
|
void ResidualEchoEstimator::Estimate(
|
|
const AecState& aec_state,
|
|
const RenderBuffer& render_buffer,
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
RTC_DCHECK(R2);
|
|
|
|
// Estimate the power of the stationary noise in the render signal.
|
|
RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_);
|
|
|
|
// Estimate the residual echo power.
|
|
if (aec_state.UsableLinearEstimate()) {
|
|
RTC_DCHECK(!aec_state.SaturatedEcho());
|
|
LinearEstimate(S2_linear, aec_state.Erle(), R2);
|
|
AddEchoReverb(S2_linear, aec_state.FilterDelayBlocks(),
|
|
aec_state.ReverbDecay(), R2);
|
|
} else {
|
|
// Estimate the echo generating signal power.
|
|
std::array<float, kFftLengthBy2Plus1> X2;
|
|
|
|
// Computes the spectral power over the blocks surrounding the delay.
|
|
size_t window_start = std::max(
|
|
0, aec_state.FilterDelayBlocks() -
|
|
static_cast<int>(config_.echo_model.render_pre_window_size));
|
|
size_t window_end =
|
|
aec_state.FilterDelayBlocks() +
|
|
static_cast<int>(config_.echo_model.render_post_window_size);
|
|
EchoGeneratingPower(render_buffer, window_start, window_end,
|
|
!aec_state.UseStationaryProperties(), &X2);
|
|
|
|
// Subtract the stationary noise power to avoid stationary noise causing
|
|
// excessive echo suppression.
|
|
std::transform(X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(),
|
|
[&](float a, float b) {
|
|
return std::max(
|
|
0.f, a - config_.echo_model.stationary_gate_slope * b);
|
|
});
|
|
|
|
float echo_path_gain;
|
|
if (override_estimated_echo_path_gain_) {
|
|
echo_path_gain =
|
|
aec_state.TransparentMode() && soft_transparent_mode_ ? 0.01f : 1.f;
|
|
} else {
|
|
echo_path_gain = aec_state.TransparentMode() && soft_transparent_mode_
|
|
? 0.01f
|
|
: aec_state.EchoPathGain();
|
|
}
|
|
NonLinearEstimate(echo_path_gain, X2, Y2, R2);
|
|
|
|
// If the echo is saturated, estimate the echo power as the maximum echo
|
|
// power with a leakage factor.
|
|
if (aec_state.SaturatedEcho()) {
|
|
R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f);
|
|
}
|
|
|
|
AddEchoReverb(*R2, config_.filter.main.length_blocks,
|
|
aec_state.ReverbDecay(), R2);
|
|
}
|
|
|
|
if (aec_state.UseStationaryProperties()) {
|
|
// Scale the echo according to echo audibility.
|
|
std::array<float, kFftLengthBy2Plus1> residual_scaling;
|
|
aec_state.GetResidualEchoScaling(residual_scaling);
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
(*R2)[k] *= residual_scaling[k];
|
|
if (residual_scaling[k] == 0.f) {
|
|
R2_hold_counter_[k] = 0;
|
|
}
|
|
}
|
|
}
|
|
if (!soft_transparent_mode_) {
|
|
// If the echo is deemed inaudible, set the residual echo to zero.
|
|
if (aec_state.TransparentMode()) {
|
|
R2->fill(0.f);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
}
|
|
}
|
|
|
|
std::copy(R2->begin(), R2->end(), R2_old_.begin());
|
|
}
|
|
|
|
void ResidualEchoEstimator::Reset() {
|
|
X2_noise_floor_counter_.fill(config_.echo_model.noise_floor_hold);
|
|
X2_noise_floor_.fill(config_.echo_model.min_noise_floor_power);
|
|
R2_reverb_.fill(0.f);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
for (auto& S2_k : S2_old_) {
|
|
S2_k.fill(0.f);
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::LinearEstimate(
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& erle,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f);
|
|
std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
|
|
[](float a, float b) {
|
|
RTC_DCHECK_LT(0.f, a);
|
|
return b / a;
|
|
});
|
|
}
|
|
|
|
void ResidualEchoEstimator::NonLinearEstimate(
|
|
float echo_path_gain,
|
|
const std::array<float, kFftLengthBy2Plus1>& X2,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
|
|
// Compute preliminary residual echo.
|
|
std::transform(X2.begin(), X2.end(), R2->begin(), [echo_path_gain](float a) {
|
|
return a * echo_path_gain * echo_path_gain;
|
|
});
|
|
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
// Update hold counter.
|
|
R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1;
|
|
|
|
// Compute the residual echo by holding a maximum echo powers and an echo
|
|
// fading corresponding to a room with an RT60 value of about 50 ms.
|
|
(*R2)[k] =
|
|
R2_hold_counter_[k] < config_.echo_model.nonlinear_hold
|
|
? std::max((*R2)[k], R2_old_[k])
|
|
: std::min(
|
|
(*R2)[k] + R2_old_[k] * config_.echo_model.nonlinear_release,
|
|
Y2[k]);
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::AddEchoReverb(
|
|
const std::array<float, kFftLengthBy2Plus1>& S2,
|
|
size_t delay,
|
|
float reverb_decay_factor,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
// Compute the decay factor for how much the echo has decayed before leaving
|
|
// the region covered by the linear model.
|
|
auto integer_power = [](float base, int exp) {
|
|
float result = 1.f;
|
|
for (int k = 0; k < exp; ++k) {
|
|
result *= base;
|
|
}
|
|
return result;
|
|
};
|
|
RTC_DCHECK_LE(delay, S2_old_.size());
|
|
const float reverb_decay_for_delay =
|
|
integer_power(reverb_decay_factor, S2_old_.size() - delay);
|
|
|
|
// Update the estimate of the reverberant residual echo power.
|
|
S2_old_index_ = S2_old_index_ > 0 ? S2_old_index_ - 1 : S2_old_.size() - 1;
|
|
const auto& S2_end = S2_old_[S2_old_index_];
|
|
std::transform(
|
|
S2_end.begin(), S2_end.end(), R2_reverb_.begin(), R2_reverb_.begin(),
|
|
[reverb_decay_for_delay, reverb_decay_factor](float a, float b) {
|
|
return (b + a * reverb_decay_for_delay) * reverb_decay_factor;
|
|
});
|
|
|
|
// Update the buffer of old echo powers.
|
|
std::copy(S2.begin(), S2.end(), S2_old_[S2_old_index_].begin());
|
|
|
|
// Add the power of the echo reverb to the residual echo power.
|
|
std::transform(R2->begin(), R2->end(), R2_reverb_.begin(), R2->begin(),
|
|
std::plus<float>());
|
|
}
|
|
|
|
void ResidualEchoEstimator::EchoGeneratingPower(
|
|
const RenderBuffer& render_buffer,
|
|
size_t min_delay,
|
|
size_t max_delay,
|
|
bool apply_noise_gating,
|
|
std::array<float, kFftLengthBy2Plus1>* X2) const {
|
|
X2->fill(0.f);
|
|
for (size_t k = min_delay; k <= max_delay; ++k) {
|
|
std::transform(X2->begin(), X2->end(), render_buffer.Spectrum(k).begin(),
|
|
X2->begin(),
|
|
[](float a, float b) { return std::max(a, b); });
|
|
}
|
|
|
|
if (apply_noise_gating) {
|
|
// Apply soft noise gate.
|
|
std::for_each(X2->begin(), X2->end(), [&](float& a) {
|
|
if (config_.echo_model.noise_gate_power > a) {
|
|
a = std::max(0.f, a - config_.echo_model.noise_gate_slope *
|
|
(config_.echo_model.noise_gate_power - a));
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::RenderNoisePower(
|
|
const RenderBuffer& render_buffer,
|
|
std::array<float, kFftLengthBy2Plus1>* X2_noise_floor,
|
|
std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) const {
|
|
RTC_DCHECK(X2_noise_floor);
|
|
RTC_DCHECK(X2_noise_floor_counter);
|
|
|
|
const auto render_power = render_buffer.Spectrum(0);
|
|
RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size());
|
|
RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size());
|
|
|
|
// Estimate the stationary noise power in a minimum statistics manner.
|
|
for (size_t k = 0; k < render_power.size(); ++k) {
|
|
// Decrease rapidly.
|
|
if (render_power[k] < (*X2_noise_floor)[k]) {
|
|
(*X2_noise_floor)[k] = render_power[k];
|
|
(*X2_noise_floor_counter)[k] = 0;
|
|
} else {
|
|
// Increase in a delayed, leaky manner.
|
|
if ((*X2_noise_floor_counter)[k] >=
|
|
static_cast<int>(config_.echo_model.noise_floor_hold)) {
|
|
(*X2_noise_floor)[k] =
|
|
std::max((*X2_noise_floor)[k] * 1.1f,
|
|
config_.echo_model.min_noise_floor_power);
|
|
} else {
|
|
++(*X2_noise_floor_counter)[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|