webrtc_m130/api/units/data_rate_unittest.cc
Sebastian Jansson 8e06419ee9 Makes units constexpr when possible.
This makes the constructor and the unchecked create functions
constexpr on the unit classes Timestamp, TimeDelta, Datarate and
DataSize. This allows using the units in constexpr constants.
Unchecked access methods are made constexpr as well. Making them
usable in static asserts.

Constexpr create functions for checked construction is added in
a separate CL.

Bug: webrtc:9574
Change-Id: I605ae2e8572195dbb2078c283056208be0f43333
Reviewed-on: https://webrtc-review.googlesource.com/91160
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24206}
2018-08-07 11:30:21 +00:00

134 lines
5.0 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/units/data_rate.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
TEST(DataRateTest, ConstExpr) {
constexpr DataRate kDataRateZero = DataRate::Zero();
constexpr DataRate kDataRateInf = DataRate::Infinity();
static_assert(kDataRateZero.IsZero(), "");
static_assert(kDataRateInf.IsInfinite(), "");
}
TEST(DataRateTest, GetBackSameValues) {
const int64_t kValue = 123 * 8;
EXPECT_EQ(DataRate::bps(kValue).bps(), kValue);
EXPECT_EQ(DataRate::kbps(kValue).kbps(), kValue);
}
TEST(DataRateTest, GetDifferentPrefix) {
const int64_t kValue = 123 * 8000;
EXPECT_EQ(DataRate::bps(kValue).kbps(), kValue / 1000);
}
TEST(DataRateTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(DataRate::Zero().IsZero());
EXPECT_FALSE(DataRate::bps(kValue).IsZero());
EXPECT_TRUE(DataRate::Infinity().IsInfinite());
EXPECT_FALSE(DataRate::Zero().IsInfinite());
EXPECT_FALSE(DataRate::bps(kValue).IsInfinite());
EXPECT_FALSE(DataRate::Infinity().IsFinite());
EXPECT_TRUE(DataRate::bps(kValue).IsFinite());
EXPECT_TRUE(DataRate::Zero().IsFinite());
}
TEST(DataRateTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
const DataRate small = DataRate::bps(kSmall);
const DataRate large = DataRate::bps(kLarge);
EXPECT_EQ(DataRate::Zero(), DataRate::bps(0));
EXPECT_EQ(DataRate::Infinity(), DataRate::Infinity());
EXPECT_EQ(small, small);
EXPECT_LE(small, small);
EXPECT_GE(small, small);
EXPECT_NE(small, large);
EXPECT_LE(small, large);
EXPECT_LT(small, large);
EXPECT_GE(large, small);
EXPECT_GT(large, small);
EXPECT_LT(DataRate::Zero(), small);
EXPECT_GT(DataRate::Infinity(), large);
}
TEST(DataRateTest, ConvertsToAndFromDouble) {
const int64_t kValue = 128;
const double kDoubleValue = static_cast<double>(kValue);
const double kDoubleKbps = kValue * 1e-3;
const double kFloatKbps = static_cast<float>(kDoubleKbps);
EXPECT_EQ(DataRate::bps(kValue).bps<double>(), kDoubleValue);
EXPECT_EQ(DataRate::bps(kValue).kbps<double>(), kDoubleKbps);
EXPECT_EQ(DataRate::bps(kValue).kbps<float>(), kFloatKbps);
EXPECT_EQ(DataRate::bps(kDoubleValue).bps(), kValue);
EXPECT_EQ(DataRate::kbps(kDoubleKbps).bps(), kValue);
const double kInfinity = std::numeric_limits<double>::infinity();
EXPECT_EQ(DataRate::Infinity().bps<double>(), kInfinity);
EXPECT_TRUE(DataRate::bps(kInfinity).IsInfinite());
EXPECT_TRUE(DataRate::kbps(kInfinity).IsInfinite());
}
TEST(DataRateTest, MathOperations) {
const int64_t kValueA = 450;
const int64_t kValueB = 267;
const DataRate rate_a = DataRate::bps(kValueA);
const DataRate rate_b = DataRate::bps(kValueB);
const int32_t kInt32Value = 123;
const double kFloatValue = 123.0;
EXPECT_EQ((rate_a * kValueB).bps(), kValueA * kValueB);
EXPECT_EQ((rate_a * kInt32Value).bps(), kValueA * kInt32Value);
EXPECT_EQ((rate_a * kFloatValue).bps(), kValueA * kFloatValue);
EXPECT_EQ(rate_a / rate_b, static_cast<double>(kValueA) / kValueB);
}
TEST(UnitConversionTest, DataRateAndDataSizeAndTimeDelta) {
const int64_t kSeconds = 5;
const int64_t kBitsPerSecond = 440;
const int64_t kBytes = 44000;
const TimeDelta delta_a = TimeDelta::seconds(kSeconds);
const DataRate rate_b = DataRate::bps(kBitsPerSecond);
const DataSize size_c = DataSize::bytes(kBytes);
EXPECT_EQ((delta_a * rate_b).bytes(), kSeconds * kBitsPerSecond / 8);
EXPECT_EQ((rate_b * delta_a).bytes(), kSeconds * kBitsPerSecond / 8);
EXPECT_EQ((size_c / delta_a).bps(), kBytes * 8 / kSeconds);
EXPECT_EQ((size_c / rate_b).seconds(), kBytes * 8 / kBitsPerSecond);
}
TEST(UnitConversionTest, DivisionFailsOnLargeSize) {
// Note that the failure is expected since the current implementation is
// implementated in a way that does not support division of large sizes. If
// the implementation is changed, this test can safely be removed.
const int64_t kJustSmallEnoughForDivision =
std::numeric_limits<int64_t>::max() / 8000000;
const DataSize large_size = DataSize::bytes(kJustSmallEnoughForDivision);
const DataRate data_rate = DataRate::kbps(100);
const TimeDelta time_delta = TimeDelta::ms(100);
EXPECT_TRUE((large_size / data_rate).IsFinite());
EXPECT_TRUE((large_size / time_delta).IsFinite());
#if GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON
const int64_t kToolargeForDivision = kJustSmallEnoughForDivision + 1;
const DataSize too_large_size = DataSize::bytes(kToolargeForDivision);
EXPECT_DEATH(too_large_size / data_rate, "");
EXPECT_DEATH(too_large_size / time_delta, "");
#endif // GTEST_HAS_DEATH_TEST && !!defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON
}
} // namespace test
} // namespace webrtc