yujo 36b1a5fcec Add mute state field to AudioFrame and switch some callers to use it. Also make AudioFrame::data_ private and instead provide:
const int16_t* data() const;
int16_t* mutable_data();

- data() returns a zeroed static buffer on muted frames (to avoid unnecessary zeroing of the member buffer) and directly returns AudioFrame::data_ on unmuted frames.
- mutable_data(), lazily zeroes AudioFrame::data_ if the frame is currently muted, sets muted=false, and returns AudioFrame::data_.

These accessors serve to "force" callers to be aware of the mute state field, i.e. lazy zeroing is not the primary motivation.

This change only optimizes handling of muted frames where it is somewhat trivial to do so. Other improvements requiring more significant structural changes will come later.

BUG=webrtc:7343
TBR=henrika

Review-Url: https://codereview.webrtc.org/2750783004
Cr-Commit-Position: refs/heads/master@{#18543}
2017-06-12 19:45:32 +00:00

407 lines
14 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/acm2/acm_receiver.h"
#include <stdlib.h> // malloc
#include <algorithm> // sort
#include <vector>
#include "webrtc/api/audio_codecs/audio_decoder.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/format_macros.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/safe_conversions.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/audio_coding/acm2/acm_resampler.h"
#include "webrtc/modules/audio_coding/acm2/call_statistics.h"
#include "webrtc/modules/audio_coding/neteq/include/neteq.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/modules/audio_coding/acm2/rent_a_codec.h"
namespace webrtc {
namespace acm2 {
AcmReceiver::AcmReceiver(const AudioCodingModule::Config& config)
: last_audio_buffer_(new int16_t[AudioFrame::kMaxDataSizeSamples]),
neteq_(NetEq::Create(config.neteq_config, config.decoder_factory)),
clock_(config.clock),
resampled_last_output_frame_(true) {
RTC_DCHECK(clock_);
memset(last_audio_buffer_.get(), 0, AudioFrame::kMaxDataSizeSamples);
}
AcmReceiver::~AcmReceiver() {
delete neteq_;
}
int AcmReceiver::SetMinimumDelay(int delay_ms) {
if (neteq_->SetMinimumDelay(delay_ms))
return 0;
LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
return -1;
}
int AcmReceiver::SetMaximumDelay(int delay_ms) {
if (neteq_->SetMaximumDelay(delay_ms))
return 0;
LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
return -1;
}
int AcmReceiver::LeastRequiredDelayMs() const {
return neteq_->LeastRequiredDelayMs();
}
rtc::Optional<int> AcmReceiver::last_packet_sample_rate_hz() const {
rtc::CritScope lock(&crit_sect_);
return last_packet_sample_rate_hz_;
}
int AcmReceiver::last_output_sample_rate_hz() const {
return neteq_->last_output_sample_rate_hz();
}
int AcmReceiver::InsertPacket(const WebRtcRTPHeader& rtp_header,
rtc::ArrayView<const uint8_t> incoming_payload) {
uint32_t receive_timestamp = 0;
const RTPHeader* header = &rtp_header.header; // Just a shorthand.
if (incoming_payload.empty()) {
neteq_->InsertEmptyPacket(rtp_header.header);
return 0;
}
{
rtc::CritScope lock(&crit_sect_);
const rtc::Optional<CodecInst> ci =
RtpHeaderToDecoder(*header, incoming_payload[0]);
if (!ci) {
LOG_F(LS_ERROR) << "Payload-type "
<< static_cast<int>(header->payloadType)
<< " is not registered.";
return -1;
}
receive_timestamp = NowInTimestamp(ci->plfreq);
if (STR_CASE_CMP(ci->plname, "cn") == 0) {
if (last_audio_decoder_ && last_audio_decoder_->channels > 1) {
// This is a CNG and the audio codec is not mono, so skip pushing in
// packets into NetEq.
return 0;
}
} else {
last_audio_decoder_ = ci;
last_audio_format_ = neteq_->GetDecoderFormat(ci->pltype);
RTC_DCHECK(last_audio_format_);
last_packet_sample_rate_hz_ = rtc::Optional<int>(ci->plfreq);
}
} // |crit_sect_| is released.
if (neteq_->InsertPacket(rtp_header.header, incoming_payload,
receive_timestamp) < 0) {
LOG(LERROR) << "AcmReceiver::InsertPacket "
<< static_cast<int>(header->payloadType)
<< " Failed to insert packet";
return -1;
}
return 0;
}
int AcmReceiver::GetAudio(int desired_freq_hz,
AudioFrame* audio_frame,
bool* muted) {
RTC_DCHECK(muted);
// Accessing members, take the lock.
rtc::CritScope lock(&crit_sect_);
if (neteq_->GetAudio(audio_frame, muted) != NetEq::kOK) {
LOG(LERROR) << "AcmReceiver::GetAudio - NetEq Failed.";
return -1;
}
const int current_sample_rate_hz = neteq_->last_output_sample_rate_hz();
// Update if resampling is required.
const bool need_resampling =
(desired_freq_hz != -1) && (current_sample_rate_hz != desired_freq_hz);
if (need_resampling && !resampled_last_output_frame_) {
// Prime the resampler with the last frame.
int16_t temp_output[AudioFrame::kMaxDataSizeSamples];
int samples_per_channel_int = resampler_.Resample10Msec(
last_audio_buffer_.get(), current_sample_rate_hz, desired_freq_hz,
audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
temp_output);
if (samples_per_channel_int < 0) {
LOG(LERROR) << "AcmReceiver::GetAudio - "
"Resampling last_audio_buffer_ failed.";
return -1;
}
}
// TODO(henrik.lundin) Glitches in the output may appear if the output rate
// from NetEq changes. See WebRTC issue 3923.
if (need_resampling) {
// TODO(yujo): handle this more efficiently for muted frames.
int samples_per_channel_int = resampler_.Resample10Msec(
audio_frame->data(), current_sample_rate_hz, desired_freq_hz,
audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
audio_frame->mutable_data());
if (samples_per_channel_int < 0) {
LOG(LERROR) << "AcmReceiver::GetAudio - Resampling audio_buffer_ failed.";
return -1;
}
audio_frame->samples_per_channel_ =
static_cast<size_t>(samples_per_channel_int);
audio_frame->sample_rate_hz_ = desired_freq_hz;
RTC_DCHECK_EQ(
audio_frame->sample_rate_hz_,
rtc::dchecked_cast<int>(audio_frame->samples_per_channel_ * 100));
resampled_last_output_frame_ = true;
} else {
resampled_last_output_frame_ = false;
// We might end up here ONLY if codec is changed.
}
// Store current audio in |last_audio_buffer_| for next time.
memcpy(last_audio_buffer_.get(), audio_frame->data(),
sizeof(int16_t) * audio_frame->samples_per_channel_ *
audio_frame->num_channels_);
call_stats_.DecodedByNetEq(audio_frame->speech_type_, *muted);
return 0;
}
void AcmReceiver::SetCodecs(const std::map<int, SdpAudioFormat>& codecs) {
neteq_->SetCodecs(codecs);
}
int32_t AcmReceiver::AddCodec(int acm_codec_id,
uint8_t payload_type,
size_t channels,
int /*sample_rate_hz*/,
AudioDecoder* audio_decoder,
const std::string& name) {
// TODO(kwiberg): This function has been ignoring the |sample_rate_hz|
// argument for a long time. Arguably, it should simply be removed.
const auto neteq_decoder = [acm_codec_id, channels]() -> NetEqDecoder {
if (acm_codec_id == -1)
return NetEqDecoder::kDecoderArbitrary; // External decoder.
const rtc::Optional<RentACodec::CodecId> cid =
RentACodec::CodecIdFromIndex(acm_codec_id);
RTC_DCHECK(cid) << "Invalid codec index: " << acm_codec_id;
const rtc::Optional<NetEqDecoder> ned =
RentACodec::NetEqDecoderFromCodecId(*cid, channels);
RTC_DCHECK(ned) << "Invalid codec ID: " << static_cast<int>(*cid);
return *ned;
}();
const rtc::Optional<SdpAudioFormat> new_format =
NetEqDecoderToSdpAudioFormat(neteq_decoder);
rtc::CritScope lock(&crit_sect_);
const auto old_format = neteq_->GetDecoderFormat(payload_type);
if (old_format && new_format && *old_format == *new_format) {
// Re-registering the same codec. Do nothing and return.
return 0;
}
if (neteq_->RemovePayloadType(payload_type) != NetEq::kOK &&
neteq_->LastError() != NetEq::kDecoderNotFound) {
LOG(LERROR) << "Cannot remove payload " << static_cast<int>(payload_type);
return -1;
}
int ret_val;
if (!audio_decoder) {
ret_val = neteq_->RegisterPayloadType(neteq_decoder, name, payload_type);
} else {
ret_val = neteq_->RegisterExternalDecoder(
audio_decoder, neteq_decoder, name, payload_type);
}
if (ret_val != NetEq::kOK) {
LOG(LERROR) << "AcmReceiver::AddCodec " << acm_codec_id
<< static_cast<int>(payload_type)
<< " channels: " << channels;
return -1;
}
return 0;
}
bool AcmReceiver::AddCodec(int rtp_payload_type,
const SdpAudioFormat& audio_format) {
const auto old_format = neteq_->GetDecoderFormat(rtp_payload_type);
if (old_format && *old_format == audio_format) {
// Re-registering the same codec. Do nothing and return.
return true;
}
if (neteq_->RemovePayloadType(rtp_payload_type) != NetEq::kOK &&
neteq_->LastError() != NetEq::kDecoderNotFound) {
LOG(LERROR) << "AcmReceiver::AddCodec: Could not remove existing decoder"
" for payload type "
<< rtp_payload_type;
return false;
}
const bool success =
neteq_->RegisterPayloadType(rtp_payload_type, audio_format);
if (!success) {
LOG(LERROR) << "AcmReceiver::AddCodec failed for payload type "
<< rtp_payload_type << ", decoder format " << audio_format;
}
return success;
}
void AcmReceiver::FlushBuffers() {
neteq_->FlushBuffers();
}
void AcmReceiver::RemoveAllCodecs() {
rtc::CritScope lock(&crit_sect_);
neteq_->RemoveAllPayloadTypes();
last_audio_decoder_ = rtc::Optional<CodecInst>();
last_audio_format_ = rtc::Optional<SdpAudioFormat>();
last_packet_sample_rate_hz_ = rtc::Optional<int>();
}
int AcmReceiver::RemoveCodec(uint8_t payload_type) {
rtc::CritScope lock(&crit_sect_);
if (neteq_->RemovePayloadType(payload_type) != NetEq::kOK &&
neteq_->LastError() != NetEq::kDecoderNotFound) {
LOG(LERROR) << "AcmReceiver::RemoveCodec" << static_cast<int>(payload_type);
return -1;
}
if (last_audio_decoder_ && payload_type == last_audio_decoder_->pltype) {
last_audio_decoder_ = rtc::Optional<CodecInst>();
last_audio_format_ = rtc::Optional<SdpAudioFormat>();
last_packet_sample_rate_hz_ = rtc::Optional<int>();
}
return 0;
}
rtc::Optional<uint32_t> AcmReceiver::GetPlayoutTimestamp() {
return neteq_->GetPlayoutTimestamp();
}
int AcmReceiver::FilteredCurrentDelayMs() const {
return neteq_->FilteredCurrentDelayMs();
}
int AcmReceiver::LastAudioCodec(CodecInst* codec) const {
rtc::CritScope lock(&crit_sect_);
if (!last_audio_decoder_) {
return -1;
}
*codec = *last_audio_decoder_;
return 0;
}
rtc::Optional<SdpAudioFormat> AcmReceiver::LastAudioFormat() const {
rtc::CritScope lock(&crit_sect_);
return last_audio_format_;
}
void AcmReceiver::GetNetworkStatistics(NetworkStatistics* acm_stat) {
NetEqNetworkStatistics neteq_stat;
// NetEq function always returns zero, so we don't check the return value.
neteq_->NetworkStatistics(&neteq_stat);
acm_stat->currentBufferSize = neteq_stat.current_buffer_size_ms;
acm_stat->preferredBufferSize = neteq_stat.preferred_buffer_size_ms;
acm_stat->jitterPeaksFound = neteq_stat.jitter_peaks_found ? true : false;
acm_stat->currentPacketLossRate = neteq_stat.packet_loss_rate;
acm_stat->currentDiscardRate = neteq_stat.packet_discard_rate;
acm_stat->currentExpandRate = neteq_stat.expand_rate;
acm_stat->currentSpeechExpandRate = neteq_stat.speech_expand_rate;
acm_stat->currentPreemptiveRate = neteq_stat.preemptive_rate;
acm_stat->currentAccelerateRate = neteq_stat.accelerate_rate;
acm_stat->currentSecondaryDecodedRate = neteq_stat.secondary_decoded_rate;
acm_stat->clockDriftPPM = neteq_stat.clockdrift_ppm;
acm_stat->addedSamples = neteq_stat.added_zero_samples;
acm_stat->meanWaitingTimeMs = neteq_stat.mean_waiting_time_ms;
acm_stat->medianWaitingTimeMs = neteq_stat.median_waiting_time_ms;
acm_stat->minWaitingTimeMs = neteq_stat.min_waiting_time_ms;
acm_stat->maxWaitingTimeMs = neteq_stat.max_waiting_time_ms;
}
int AcmReceiver::DecoderByPayloadType(uint8_t payload_type,
CodecInst* codec) const {
rtc::CritScope lock(&crit_sect_);
const rtc::Optional<CodecInst> ci = neteq_->GetDecoder(payload_type);
if (ci) {
*codec = *ci;
return 0;
} else {
LOG(LERROR) << "AcmReceiver::DecoderByPayloadType "
<< static_cast<int>(payload_type);
return -1;
}
}
int AcmReceiver::EnableNack(size_t max_nack_list_size) {
neteq_->EnableNack(max_nack_list_size);
return 0;
}
void AcmReceiver::DisableNack() {
neteq_->DisableNack();
}
std::vector<uint16_t> AcmReceiver::GetNackList(
int64_t round_trip_time_ms) const {
return neteq_->GetNackList(round_trip_time_ms);
}
void AcmReceiver::ResetInitialDelay() {
neteq_->SetMinimumDelay(0);
// TODO(turajs): Should NetEq Buffer be flushed?
}
const rtc::Optional<CodecInst> AcmReceiver::RtpHeaderToDecoder(
const RTPHeader& rtp_header,
uint8_t first_payload_byte) const {
const rtc::Optional<CodecInst> ci =
neteq_->GetDecoder(rtp_header.payloadType);
if (ci && STR_CASE_CMP(ci->plname, "red") == 0) {
// This is a RED packet. Get the payload of the audio codec.
return neteq_->GetDecoder(first_payload_byte & 0x7f);
} else {
return ci;
}
}
uint32_t AcmReceiver::NowInTimestamp(int decoder_sampling_rate) const {
// Down-cast the time to (32-6)-bit since we only care about
// the least significant bits. (32-6) bits cover 2^(32-6) = 67108864 ms.
// We masked 6 most significant bits of 32-bit so there is no overflow in
// the conversion from milliseconds to timestamp.
const uint32_t now_in_ms = static_cast<uint32_t>(
clock_->TimeInMilliseconds() & 0x03ffffff);
return static_cast<uint32_t>(
(decoder_sampling_rate / 1000) * now_in_ms);
}
void AcmReceiver::GetDecodingCallStatistics(
AudioDecodingCallStats* stats) const {
rtc::CritScope lock(&crit_sect_);
*stats = call_stats_.GetDecodingStatistics();
}
} // namespace acm2
} // namespace webrtc