andrew bdafe31b86 Add aecdump support to audioproc_f.
Add a new interface to abstract away file operations. This CL temporarily
removes support for dumping the output of reverse streams. It will be easy to
restore in the new framework, although we may decide to only allow it with
the aecdump format.

We also now require the user to specify the output format, rather than
defaulting to the input format.

TEST=Bit-exact output to the previous audioproc_f version using an input wav
file, and to the legacy audioproc using an aecdump file.

Review URL: https://codereview.webrtc.org/1409943002

Cr-Commit-Position: refs/heads/master@{#10460}
2015-10-30 06:43:00 +00:00

153 lines
4.8 KiB
C++

/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/checks.h"
#include "webrtc/modules/audio_processing/test/test_utils.h"
namespace webrtc {
RawFile::RawFile(const std::string& filename)
: file_handle_(fopen(filename.c_str(), "wb")) {}
RawFile::~RawFile() {
fclose(file_handle_);
}
void RawFile::WriteSamples(const int16_t* samples, size_t num_samples) {
#ifndef WEBRTC_ARCH_LITTLE_ENDIAN
#error "Need to convert samples to little-endian when writing to PCM file"
#endif
fwrite(samples, sizeof(*samples), num_samples, file_handle_);
}
void RawFile::WriteSamples(const float* samples, size_t num_samples) {
fwrite(samples, sizeof(*samples), num_samples, file_handle_);
}
ChannelBufferWavReader::ChannelBufferWavReader(rtc::scoped_ptr<WavReader> file)
: file_(file.Pass()) {}
bool ChannelBufferWavReader::Read(ChannelBuffer<float>* buffer) {
RTC_CHECK_EQ(file_->num_channels(), buffer->num_channels());
interleaved_.resize(buffer->size());
if (file_->ReadSamples(interleaved_.size(), &interleaved_[0]) !=
interleaved_.size()) {
return false;
}
FloatS16ToFloat(&interleaved_[0], interleaved_.size(), &interleaved_[0]);
Deinterleave(&interleaved_[0], buffer->num_frames(), buffer->num_channels(),
buffer->channels());
return true;
}
ChannelBufferWavWriter::ChannelBufferWavWriter(rtc::scoped_ptr<WavWriter> file)
: file_(file.Pass()) {}
void ChannelBufferWavWriter::Write(const ChannelBuffer<float>& buffer) {
RTC_CHECK_EQ(file_->num_channels(), buffer.num_channels());
interleaved_.resize(buffer.size());
Interleave(buffer.channels(), buffer.num_frames(), buffer.num_channels(),
&interleaved_[0]);
FloatToFloatS16(&interleaved_[0], interleaved_.size(), &interleaved_[0]);
file_->WriteSamples(&interleaved_[0], interleaved_.size());
}
void WriteIntData(const int16_t* data,
size_t length,
WavWriter* wav_file,
RawFile* raw_file) {
if (wav_file) {
wav_file->WriteSamples(data, length);
}
if (raw_file) {
raw_file->WriteSamples(data, length);
}
}
void WriteFloatData(const float* const* data,
int samples_per_channel,
int num_channels,
WavWriter* wav_file,
RawFile* raw_file) {
size_t length = num_channels * samples_per_channel;
rtc::scoped_ptr<float[]> buffer(new float[length]);
Interleave(data, samples_per_channel, num_channels, buffer.get());
if (raw_file) {
raw_file->WriteSamples(buffer.get(), length);
}
// TODO(aluebs): Use ScaleToInt16Range() from audio_util
for (size_t i = 0; i < length; ++i) {
buffer[i] = buffer[i] > 0 ?
buffer[i] * std::numeric_limits<int16_t>::max() :
-buffer[i] * std::numeric_limits<int16_t>::min();
}
if (wav_file) {
wav_file->WriteSamples(buffer.get(), length);
}
}
FILE* OpenFile(const std::string& filename, const char* mode) {
FILE* file = fopen(filename.c_str(), mode);
if (!file) {
printf("Unable to open file %s\n", filename.c_str());
exit(1);
}
return file;
}
int SamplesFromRate(int rate) {
return AudioProcessing::kChunkSizeMs * rate / 1000;
}
void SetFrameSampleRate(AudioFrame* frame,
int sample_rate_hz) {
frame->sample_rate_hz_ = sample_rate_hz;
frame->samples_per_channel_ = AudioProcessing::kChunkSizeMs *
sample_rate_hz / 1000;
}
AudioProcessing::ChannelLayout LayoutFromChannels(int num_channels) {
switch (num_channels) {
case 1:
return AudioProcessing::kMono;
case 2:
return AudioProcessing::kStereo;
default:
RTC_CHECK(false);
return AudioProcessing::kMono;
}
}
std::vector<Point> ParseArrayGeometry(const std::string& mic_positions) {
const std::vector<float> values = ParseList<float>(mic_positions);
const size_t num_mics =
rtc::CheckedDivExact(values.size(), static_cast<size_t>(3));
RTC_CHECK_GT(num_mics, 0u) << "mic_positions is not large enough.";
std::vector<Point> result;
result.reserve(num_mics);
for (size_t i = 0; i < values.size(); i += 3) {
result.push_back(Point(values[i + 0], values[i + 1], values[i + 2]));
}
return result;
}
std::vector<Point> ParseArrayGeometry(const std::string& mic_positions,
size_t num_mics) {
std::vector<Point> result = ParseArrayGeometry(mic_positions);
RTC_CHECK_EQ(result.size(), num_mics)
<< "Could not parse mic_positions or incorrect number of points.";
return result;
}
} // namespace webrtc