webrtc_m130/test/network/cross_traffic_unittest.cc
Sebastian Jansson 50f8686c6d Providing EmulatedRoute instances when creating TcpMessageRoute
This CL makes it so the caller explicitly has to provide
EmulatedRoute instances when creating TcpMessageRoute.
Previously those were automatically generated.

This means that the EmulatedRoute instances can be reused.

Bug: webrtc:9883
Change-Id: I7ad03ca6a5a3dbb91df76e3ca1190a1a75bf0cc5
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/159703
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29791}
2019-11-13 14:55:39 +00:00

153 lines
5.3 KiB
C++

/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/network/cross_traffic.h"
#include <atomic>
#include <memory>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "api/test/simulated_network.h"
#include "call/simulated_network.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/network/network_emulation_manager.h"
#include "test/time_controller/simulated_time_controller.h"
namespace webrtc {
namespace test {
namespace {
constexpr uint32_t kTestIpAddress = 0xC0A80011; // 192.168.0.17
class CountingReceiver : public EmulatedNetworkReceiverInterface {
public:
void OnPacketReceived(EmulatedIpPacket packet) override {
packets_count_++;
total_packets_size_ += packet.size();
}
std::atomic<int> packets_count_{0};
std::atomic<uint64_t> total_packets_size_{0};
};
struct TrafficCounterFixture {
SimulatedClock clock{0};
CountingReceiver counter;
TaskQueueForTest task_queue_;
EmulatedEndpoint endpoint{/*id=*/1, rtc::IPAddress(kTestIpAddress),
/*is_enabled=*/true, &task_queue_, &clock};
};
} // namespace
TEST(CrossTrafficTest, TriggerPacketBurst) {
TrafficCounterFixture fixture;
TrafficRoute traffic(&fixture.clock, &fixture.counter, &fixture.endpoint);
traffic.TriggerPacketBurst(100, 1000);
EXPECT_EQ(fixture.counter.packets_count_, 100);
EXPECT_EQ(fixture.counter.total_packets_size_, 100 * 1000ul);
}
TEST(CrossTrafficTest, PulsedPeaksCrossTraffic) {
TrafficCounterFixture fixture;
TrafficRoute traffic(&fixture.clock, &fixture.counter, &fixture.endpoint);
PulsedPeaksConfig config;
config.peak_rate = DataRate::kbps(1000);
config.min_packet_size = DataSize::bytes(1);
config.min_packet_interval = TimeDelta::ms(25);
config.send_duration = TimeDelta::ms(500);
config.hold_duration = TimeDelta::ms(250);
PulsedPeaksCrossTraffic pulsed_peaks(config, &traffic);
const auto kRunTime = TimeDelta::seconds(1);
while (fixture.clock.TimeInMilliseconds() < kRunTime.ms()) {
pulsed_peaks.Process(Timestamp::ms(fixture.clock.TimeInMilliseconds()));
fixture.clock.AdvanceTimeMilliseconds(1);
}
RTC_LOG(INFO) << fixture.counter.packets_count_ << " packets; "
<< fixture.counter.total_packets_size_ << " bytes";
// Using 50% duty cycle.
const auto kExpectedDataSent = kRunTime * config.peak_rate * 0.5;
EXPECT_NEAR(fixture.counter.total_packets_size_, kExpectedDataSent.bytes(),
kExpectedDataSent.bytes() * 0.1);
}
TEST(CrossTrafficTest, RandomWalkCrossTraffic) {
TrafficCounterFixture fixture;
TrafficRoute traffic(&fixture.clock, &fixture.counter, &fixture.endpoint);
RandomWalkConfig config;
config.peak_rate = DataRate::kbps(1000);
config.min_packet_size = DataSize::bytes(1);
config.min_packet_interval = TimeDelta::ms(25);
config.update_interval = TimeDelta::ms(500);
config.variance = 0.0;
config.bias = 1.0;
RandomWalkCrossTraffic random_walk(config, &traffic);
const auto kRunTime = TimeDelta::seconds(1);
while (fixture.clock.TimeInMilliseconds() < kRunTime.ms()) {
random_walk.Process(Timestamp::ms(fixture.clock.TimeInMilliseconds()));
fixture.clock.AdvanceTimeMilliseconds(1);
}
RTC_LOG(INFO) << fixture.counter.packets_count_ << " packets; "
<< fixture.counter.total_packets_size_ << " bytes";
// Sending at peak rate since bias = 1.
const auto kExpectedDataSent = kRunTime * config.peak_rate;
EXPECT_NEAR(fixture.counter.total_packets_size_, kExpectedDataSent.bytes(),
kExpectedDataSent.bytes() * 0.1);
}
TEST(TcpMessageRouteTest, DeliveredOnLossyNetwork) {
GlobalSimulatedTimeController time(Timestamp::seconds(0));
NetworkEmulationManagerImpl net(&time);
BuiltInNetworkBehaviorConfig send;
// 800 kbps means that the 100 kB message would be delivered in ca 1 second
// under ideal conditions and no overhead.
send.link_capacity_kbps = 100 * 8;
send.loss_percent = 50;
send.queue_delay_ms = 100;
send.delay_standard_deviation_ms = 20;
send.allow_reordering = true;
auto ret = send;
ret.loss_percent = 10;
auto* tcp_route =
net.CreateTcpRoute(net.CreateRoute({net.CreateEmulatedNode(send)}),
net.CreateRoute({net.CreateEmulatedNode(ret)}));
int deliver_count = 0;
// 100 kB is more than what fits into a single packet.
constexpr size_t kMessageSize = 100000;
tcp_route->SendMessage(kMessageSize, [&] {
RTC_LOG(LS_INFO) << "Received at "
<< ToString(time.GetClock()->CurrentTime());
deliver_count++;
});
// If there was no loss, we would have delivered the message in ca 1 second,
// with 50% it should take much longer.
time.Sleep(TimeDelta::seconds(5));
ASSERT_EQ(deliver_count, 0);
// But given enough time the messsage will be delivered, but only once.
time.Sleep(TimeDelta::seconds(60));
EXPECT_EQ(deliver_count, 1);
}
} // namespace test
} // namespace webrtc