Original change by isheriff@chromium.org: http://crrev.com/2387463002#ps40001 BUG=webrtc:6332 TBR=philipel@webrtc.org, stefan@webrtc.org Review URL: https://codereview.webrtc.org/2432633002 . Patch from Irfan Sheriff <isheriff@chromium.org>. Cr-Commit-Position: refs/heads/master@{#14673}
510 lines
17 KiB
C++
510 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/pacing/paced_sender.h"
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/modules/include/module_common_types.h"
|
|
#include "webrtc/modules/pacing/alr_detector.h"
|
|
#include "webrtc/modules/pacing/bitrate_prober.h"
|
|
#include "webrtc/system_wrappers/include/clock.h"
|
|
#include "webrtc/system_wrappers/include/critical_section_wrapper.h"
|
|
#include "webrtc/system_wrappers/include/field_trial.h"
|
|
|
|
namespace {
|
|
// Time limit in milliseconds between packet bursts.
|
|
const int64_t kMinPacketLimitMs = 5;
|
|
|
|
// Upper cap on process interval, in case process has not been called in a long
|
|
// time.
|
|
const int64_t kMaxIntervalTimeMs = 30;
|
|
|
|
} // namespace
|
|
|
|
// TODO(sprang): Move at least PacketQueue and MediaBudget out to separate
|
|
// files, so that we can more easily test them.
|
|
|
|
namespace webrtc {
|
|
namespace paced_sender {
|
|
struct Packet {
|
|
Packet(RtpPacketSender::Priority priority,
|
|
uint32_t ssrc,
|
|
uint16_t seq_number,
|
|
int64_t capture_time_ms,
|
|
int64_t enqueue_time_ms,
|
|
size_t length_in_bytes,
|
|
bool retransmission,
|
|
uint64_t enqueue_order)
|
|
: priority(priority),
|
|
ssrc(ssrc),
|
|
sequence_number(seq_number),
|
|
capture_time_ms(capture_time_ms),
|
|
enqueue_time_ms(enqueue_time_ms),
|
|
bytes(length_in_bytes),
|
|
retransmission(retransmission),
|
|
enqueue_order(enqueue_order) {}
|
|
|
|
RtpPacketSender::Priority priority;
|
|
uint32_t ssrc;
|
|
uint16_t sequence_number;
|
|
int64_t capture_time_ms;
|
|
int64_t enqueue_time_ms;
|
|
size_t bytes;
|
|
bool retransmission;
|
|
uint64_t enqueue_order;
|
|
std::list<Packet>::iterator this_it;
|
|
};
|
|
|
|
// Used by priority queue to sort packets.
|
|
struct Comparator {
|
|
bool operator()(const Packet* first, const Packet* second) {
|
|
// Highest prio = 0.
|
|
if (first->priority != second->priority)
|
|
return first->priority > second->priority;
|
|
|
|
// Retransmissions go first.
|
|
if (second->retransmission != first->retransmission)
|
|
return second->retransmission;
|
|
|
|
// Older frames have higher prio.
|
|
if (first->capture_time_ms != second->capture_time_ms)
|
|
return first->capture_time_ms > second->capture_time_ms;
|
|
|
|
return first->enqueue_order > second->enqueue_order;
|
|
}
|
|
};
|
|
|
|
// Class encapsulating a priority queue with some extensions.
|
|
class PacketQueue {
|
|
public:
|
|
explicit PacketQueue(Clock* clock)
|
|
: bytes_(0),
|
|
clock_(clock),
|
|
queue_time_sum_(0),
|
|
time_last_updated_(clock_->TimeInMilliseconds()) {}
|
|
virtual ~PacketQueue() {}
|
|
|
|
void Push(const Packet& packet) {
|
|
if (!AddToDupeSet(packet))
|
|
return;
|
|
|
|
UpdateQueueTime(packet.enqueue_time_ms);
|
|
|
|
// Store packet in list, use pointers in priority queue for cheaper moves.
|
|
// Packets have a handle to its own iterator in the list, for easy removal
|
|
// when popping from queue.
|
|
packet_list_.push_front(packet);
|
|
std::list<Packet>::iterator it = packet_list_.begin();
|
|
it->this_it = it; // Handle for direct removal from list.
|
|
prio_queue_.push(&(*it)); // Pointer into list.
|
|
bytes_ += packet.bytes;
|
|
}
|
|
|
|
const Packet& BeginPop() {
|
|
const Packet& packet = *prio_queue_.top();
|
|
prio_queue_.pop();
|
|
return packet;
|
|
}
|
|
|
|
void CancelPop(const Packet& packet) { prio_queue_.push(&(*packet.this_it)); }
|
|
|
|
void FinalizePop(const Packet& packet) {
|
|
RemoveFromDupeSet(packet);
|
|
bytes_ -= packet.bytes;
|
|
queue_time_sum_ -= (time_last_updated_ - packet.enqueue_time_ms);
|
|
packet_list_.erase(packet.this_it);
|
|
RTC_DCHECK_EQ(packet_list_.size(), prio_queue_.size());
|
|
if (packet_list_.empty())
|
|
RTC_DCHECK_EQ(0u, queue_time_sum_);
|
|
}
|
|
|
|
bool Empty() const { return prio_queue_.empty(); }
|
|
|
|
size_t SizeInPackets() const { return prio_queue_.size(); }
|
|
|
|
uint64_t SizeInBytes() const { return bytes_; }
|
|
|
|
int64_t OldestEnqueueTimeMs() const {
|
|
auto it = packet_list_.rbegin();
|
|
if (it == packet_list_.rend())
|
|
return 0;
|
|
return it->enqueue_time_ms;
|
|
}
|
|
|
|
void UpdateQueueTime(int64_t timestamp_ms) {
|
|
RTC_DCHECK_GE(timestamp_ms, time_last_updated_);
|
|
int64_t delta = timestamp_ms - time_last_updated_;
|
|
// Use packet packet_list_.size() not prio_queue_.size() here, as there
|
|
// might be an outstanding element popped from prio_queue_ currently in the
|
|
// SendPacket() call, while packet_list_ will always be correct.
|
|
queue_time_sum_ += delta * packet_list_.size();
|
|
time_last_updated_ = timestamp_ms;
|
|
}
|
|
|
|
int64_t AverageQueueTimeMs() const {
|
|
if (prio_queue_.empty())
|
|
return 0;
|
|
return queue_time_sum_ / packet_list_.size();
|
|
}
|
|
|
|
private:
|
|
// Try to add a packet to the set of ssrc/seqno identifiers currently in the
|
|
// queue. Return true if inserted, false if this is a duplicate.
|
|
bool AddToDupeSet(const Packet& packet) {
|
|
SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc);
|
|
if (it == dupe_map_.end()) {
|
|
// First for this ssrc, just insert.
|
|
dupe_map_[packet.ssrc].insert(packet.sequence_number);
|
|
return true;
|
|
}
|
|
|
|
// Insert returns a pair, where second is a bool set to true if new element.
|
|
return it->second.insert(packet.sequence_number).second;
|
|
}
|
|
|
|
void RemoveFromDupeSet(const Packet& packet) {
|
|
SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc);
|
|
RTC_DCHECK(it != dupe_map_.end());
|
|
it->second.erase(packet.sequence_number);
|
|
if (it->second.empty()) {
|
|
dupe_map_.erase(it);
|
|
}
|
|
}
|
|
|
|
// List of packets, in the order the were enqueued. Since dequeueing may
|
|
// occur out of order, use list instead of vector.
|
|
std::list<Packet> packet_list_;
|
|
// Priority queue of the packets, sorted according to Comparator.
|
|
// Use pointers into list, to avoid moving whole struct within heap.
|
|
std::priority_queue<Packet*, std::vector<Packet*>, Comparator> prio_queue_;
|
|
// Total number of bytes in the queue.
|
|
uint64_t bytes_;
|
|
// Map<ssrc, set<seq_no> >, for checking duplicates.
|
|
typedef std::map<uint32_t, std::set<uint16_t> > SsrcSeqNoMap;
|
|
SsrcSeqNoMap dupe_map_;
|
|
Clock* const clock_;
|
|
int64_t queue_time_sum_;
|
|
int64_t time_last_updated_;
|
|
};
|
|
|
|
class IntervalBudget {
|
|
public:
|
|
explicit IntervalBudget(int initial_target_rate_kbps)
|
|
: target_rate_kbps_(initial_target_rate_kbps),
|
|
bytes_remaining_(0) {}
|
|
|
|
void set_target_rate_kbps(int target_rate_kbps) {
|
|
target_rate_kbps_ = target_rate_kbps;
|
|
bytes_remaining_ =
|
|
std::max(-kWindowMs * target_rate_kbps_ / 8, bytes_remaining_);
|
|
}
|
|
|
|
void IncreaseBudget(int64_t delta_time_ms) {
|
|
int64_t bytes = target_rate_kbps_ * delta_time_ms / 8;
|
|
if (bytes_remaining_ < 0) {
|
|
// We overused last interval, compensate this interval.
|
|
bytes_remaining_ = bytes_remaining_ + bytes;
|
|
} else {
|
|
// If we underused last interval we can't use it this interval.
|
|
bytes_remaining_ = bytes;
|
|
}
|
|
}
|
|
|
|
void UseBudget(size_t bytes) {
|
|
bytes_remaining_ = std::max(bytes_remaining_ - static_cast<int>(bytes),
|
|
-kWindowMs * target_rate_kbps_ / 8);
|
|
}
|
|
|
|
size_t bytes_remaining() const {
|
|
return static_cast<size_t>(std::max(0, bytes_remaining_));
|
|
}
|
|
|
|
int target_rate_kbps() const { return target_rate_kbps_; }
|
|
|
|
private:
|
|
static const int kWindowMs = 500;
|
|
|
|
int target_rate_kbps_;
|
|
int bytes_remaining_;
|
|
};
|
|
} // namespace paced_sender
|
|
|
|
const int64_t PacedSender::kMaxQueueLengthMs = 2000;
|
|
const float PacedSender::kDefaultPaceMultiplier = 2.5f;
|
|
|
|
PacedSender::PacedSender(Clock* clock, PacketSender* packet_sender)
|
|
: clock_(clock),
|
|
packet_sender_(packet_sender),
|
|
alr_detector_(new AlrDetector()),
|
|
critsect_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
paused_(false),
|
|
media_budget_(new paced_sender::IntervalBudget(0)),
|
|
padding_budget_(new paced_sender::IntervalBudget(0)),
|
|
prober_(new BitrateProber()),
|
|
estimated_bitrate_bps_(0),
|
|
min_send_bitrate_kbps_(0u),
|
|
max_padding_bitrate_kbps_(0u),
|
|
pacing_bitrate_kbps_(0),
|
|
time_last_update_us_(clock->TimeInMicroseconds()),
|
|
packets_(new paced_sender::PacketQueue(clock)),
|
|
packet_counter_(0) {
|
|
UpdateBudgetWithElapsedTime(kMinPacketLimitMs);
|
|
}
|
|
|
|
PacedSender::~PacedSender() {}
|
|
|
|
void PacedSender::CreateProbeCluster(int bitrate_bps, int num_packets) {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
prober_->CreateProbeCluster(bitrate_bps, num_packets);
|
|
}
|
|
|
|
void PacedSender::Pause() {
|
|
LOG(LS_INFO) << "PacedSender paused.";
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
paused_ = true;
|
|
}
|
|
|
|
void PacedSender::Resume() {
|
|
LOG(LS_INFO) << "PacedSender resumed.";
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
paused_ = false;
|
|
}
|
|
|
|
void PacedSender::SetProbingEnabled(bool enabled) {
|
|
RTC_CHECK_EQ(0u, packet_counter_);
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
prober_->SetEnabled(enabled);
|
|
}
|
|
|
|
void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) {
|
|
if (bitrate_bps == 0)
|
|
LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate.";
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
estimated_bitrate_bps_ = bitrate_bps;
|
|
padding_budget_->set_target_rate_kbps(
|
|
std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
|
|
pacing_bitrate_kbps_ =
|
|
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
|
|
kDefaultPaceMultiplier;
|
|
alr_detector_->SetEstimatedBitrate(bitrate_bps);
|
|
}
|
|
|
|
void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps,
|
|
int padding_bitrate) {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000;
|
|
pacing_bitrate_kbps_ =
|
|
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
|
|
kDefaultPaceMultiplier;
|
|
max_padding_bitrate_kbps_ = padding_bitrate / 1000;
|
|
padding_budget_->set_target_rate_kbps(
|
|
std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
|
|
}
|
|
|
|
void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t bytes,
|
|
bool retransmission) {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
RTC_DCHECK(estimated_bitrate_bps_ > 0)
|
|
<< "SetEstimatedBitrate must be called before InsertPacket.";
|
|
|
|
int64_t now_ms = clock_->TimeInMilliseconds();
|
|
prober_->OnIncomingPacket(bytes);
|
|
|
|
if (capture_time_ms < 0)
|
|
capture_time_ms = now_ms;
|
|
|
|
packets_->Push(paced_sender::Packet(priority, ssrc, sequence_number,
|
|
capture_time_ms, now_ms, bytes,
|
|
retransmission, packet_counter_++));
|
|
}
|
|
|
|
int64_t PacedSender::ExpectedQueueTimeMs() const {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
RTC_DCHECK_GT(pacing_bitrate_kbps_, 0u);
|
|
return static_cast<int64_t>(packets_->SizeInBytes() * 8 /
|
|
pacing_bitrate_kbps_);
|
|
}
|
|
|
|
bool PacedSender::InApplicationLimitedRegion() const {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
return alr_detector_->InApplicationLimitedRegion();
|
|
}
|
|
|
|
size_t PacedSender::QueueSizePackets() const {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
return packets_->SizeInPackets();
|
|
}
|
|
|
|
int64_t PacedSender::QueueInMs() const {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
|
|
int64_t oldest_packet = packets_->OldestEnqueueTimeMs();
|
|
if (oldest_packet == 0)
|
|
return 0;
|
|
|
|
return clock_->TimeInMilliseconds() - oldest_packet;
|
|
}
|
|
|
|
int64_t PacedSender::AverageQueueTimeMs() {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
packets_->UpdateQueueTime(clock_->TimeInMilliseconds());
|
|
return packets_->AverageQueueTimeMs();
|
|
}
|
|
|
|
int64_t PacedSender::TimeUntilNextProcess() {
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
if (prober_->IsProbing()) {
|
|
int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds());
|
|
if (ret >= 0)
|
|
return ret;
|
|
}
|
|
int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_;
|
|
int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000;
|
|
return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0);
|
|
}
|
|
|
|
void PacedSender::Process() {
|
|
int64_t now_us = clock_->TimeInMicroseconds();
|
|
CriticalSectionScoped cs(critsect_.get());
|
|
int64_t elapsed_time_ms = (now_us - time_last_update_us_ + 500) / 1000;
|
|
time_last_update_us_ = now_us;
|
|
int target_bitrate_kbps = pacing_bitrate_kbps_;
|
|
// TODO(holmer): Remove the !paused_ check when issue 5307 has been fixed.
|
|
if (!paused_ && elapsed_time_ms > 0) {
|
|
size_t queue_size_bytes = packets_->SizeInBytes();
|
|
if (queue_size_bytes > 0) {
|
|
// Assuming equal size packets and input/output rate, the average packet
|
|
// has avg_time_left_ms left to get queue_size_bytes out of the queue, if
|
|
// time constraint shall be met. Determine bitrate needed for that.
|
|
packets_->UpdateQueueTime(clock_->TimeInMilliseconds());
|
|
int64_t avg_time_left_ms = std::max<int64_t>(
|
|
1, kMaxQueueLengthMs - packets_->AverageQueueTimeMs());
|
|
int min_bitrate_needed_kbps =
|
|
static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms);
|
|
if (min_bitrate_needed_kbps > target_bitrate_kbps)
|
|
target_bitrate_kbps = min_bitrate_needed_kbps;
|
|
}
|
|
|
|
media_budget_->set_target_rate_kbps(target_bitrate_kbps);
|
|
|
|
elapsed_time_ms = std::min(kMaxIntervalTimeMs, elapsed_time_ms);
|
|
UpdateBudgetWithElapsedTime(elapsed_time_ms);
|
|
}
|
|
|
|
bool is_probing = prober_->IsProbing();
|
|
int probe_cluster_id = PacketInfo::kNotAProbe;
|
|
size_t bytes_sent = 0;
|
|
size_t recommended_probe_size = 0;
|
|
if (is_probing) {
|
|
probe_cluster_id = prober_->CurrentClusterId();
|
|
recommended_probe_size = prober_->RecommendedMinProbeSize();
|
|
}
|
|
while (!packets_->Empty()) {
|
|
// Since we need to release the lock in order to send, we first pop the
|
|
// element from the priority queue but keep it in storage, so that we can
|
|
// reinsert it if send fails.
|
|
const paced_sender::Packet& packet = packets_->BeginPop();
|
|
|
|
if (SendPacket(packet, probe_cluster_id)) {
|
|
// Send succeeded, remove it from the queue.
|
|
bytes_sent += packet.bytes;
|
|
packets_->FinalizePop(packet);
|
|
if (is_probing && bytes_sent > recommended_probe_size)
|
|
break;
|
|
} else {
|
|
// Send failed, put it back into the queue.
|
|
packets_->CancelPop(packet);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TODO(holmer): Remove the paused_ check when issue 5307 has been fixed.
|
|
if (packets_->Empty() && !paused_) {
|
|
// We can not send padding unless a normal packet has first been sent. If we
|
|
// do, timestamps get messed up.
|
|
if (packet_counter_ > 0) {
|
|
int padding_needed =
|
|
static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent)
|
|
: padding_budget_->bytes_remaining());
|
|
|
|
if (padding_needed > 0)
|
|
bytes_sent += SendPadding(padding_needed, probe_cluster_id);
|
|
}
|
|
}
|
|
if (is_probing && bytes_sent > 0)
|
|
prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent);
|
|
alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms);
|
|
}
|
|
|
|
bool PacedSender::SendPacket(const paced_sender::Packet& packet,
|
|
int probe_cluster_id) {
|
|
// TODO(holmer): Because of this bug issue 5307 we have to send audio
|
|
// packets even when the pacer is paused. Here we assume audio packets are
|
|
// always high priority and that they are the only high priority packets.
|
|
if (packet.priority != kHighPriority) {
|
|
if (paused_)
|
|
return false;
|
|
if (media_budget_->bytes_remaining() == 0 &&
|
|
probe_cluster_id == PacketInfo::kNotAProbe) {
|
|
return false;
|
|
}
|
|
}
|
|
critsect_->Leave();
|
|
const bool success = packet_sender_->TimeToSendPacket(
|
|
packet.ssrc, packet.sequence_number, packet.capture_time_ms,
|
|
packet.retransmission, probe_cluster_id);
|
|
critsect_->Enter();
|
|
|
|
if (success) {
|
|
// TODO(holmer): High priority packets should only be accounted for if we
|
|
// are allocating bandwidth for audio.
|
|
if (packet.priority != kHighPriority) {
|
|
// Update media bytes sent.
|
|
UpdateBudgetWithBytesSent(packet.bytes);
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
size_t PacedSender::SendPadding(size_t padding_needed, int probe_cluster_id) {
|
|
critsect_->Leave();
|
|
size_t bytes_sent =
|
|
packet_sender_->TimeToSendPadding(padding_needed, probe_cluster_id);
|
|
critsect_->Enter();
|
|
|
|
if (bytes_sent > 0) {
|
|
UpdateBudgetWithBytesSent(bytes_sent);
|
|
}
|
|
return bytes_sent;
|
|
}
|
|
|
|
void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) {
|
|
media_budget_->IncreaseBudget(delta_time_ms);
|
|
padding_budget_->IncreaseBudget(delta_time_ms);
|
|
}
|
|
|
|
void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) {
|
|
media_budget_->UseBudget(bytes_sent);
|
|
padding_budget_->UseBudget(bytes_sent);
|
|
}
|
|
} // namespace webrtc
|