The overshoot detector uses a simple pacer model to determine an estimate of how much the encoder is overusing the target bitrate. This utilization factor can then be adjuster for when configuring the actual target bitrate. Spatial layers (simulcast streams) are adjusted separately. Temporal layers are measured separately, but are combined into a single utilization factor per spatial layer. Bug: webrtc:10155 Change-Id: I8ea58dc6c4871e880553d7c22202f11cb2feb216 Reviewed-on: https://webrtc-review.googlesource.com/c/114886 Commit-Queue: Erik Språng <sprang@webrtc.org> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Reviewed-by: Rasmus Brandt <brandtr@webrtc.org> Cr-Commit-Position: refs/heads/master@{#26573}
233 lines
9.6 KiB
C++
233 lines
9.6 KiB
C++
/*
|
|
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "video/encoder_bitrate_adjuster.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/time_utils.h"
|
|
|
|
namespace webrtc {
|
|
|
|
constexpr int64_t EncoderBitrateAdjuster::kWindowSizeMs;
|
|
constexpr size_t EncoderBitrateAdjuster::kMinFramesSinceLayoutChange;
|
|
constexpr double EncoderBitrateAdjuster::kDefaultUtilizationFactor;
|
|
|
|
EncoderBitrateAdjuster::EncoderBitrateAdjuster(const VideoCodec& codec_settings)
|
|
: current_total_framerate_fps_(0),
|
|
frames_since_layout_change_(0),
|
|
min_bitrates_bps_{} {
|
|
if (codec_settings.codecType == VideoCodecType::kVideoCodecVP9) {
|
|
for (size_t si = 0; si < codec_settings.VP9().numberOfSpatialLayers; ++si) {
|
|
if (codec_settings.spatialLayers[si].active) {
|
|
min_bitrates_bps_[si] =
|
|
std::max(codec_settings.minBitrate * 1000,
|
|
codec_settings.spatialLayers[si].minBitrate * 1000);
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t si = 0; si < codec_settings.numberOfSimulcastStreams; ++si) {
|
|
if (codec_settings.simulcastStream[si].active) {
|
|
min_bitrates_bps_[si] =
|
|
std::max(codec_settings.minBitrate * 1000,
|
|
codec_settings.simulcastStream[si].minBitrate * 1000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EncoderBitrateAdjuster::~EncoderBitrateAdjuster() = default;
|
|
|
|
VideoBitrateAllocation EncoderBitrateAdjuster::AdjustRateAllocation(
|
|
const VideoBitrateAllocation& bitrate_allocation,
|
|
int framerate_fps) {
|
|
current_bitrate_allocation_ = bitrate_allocation;
|
|
current_total_framerate_fps_ = framerate_fps;
|
|
|
|
// First check that overshoot detectors exist, and store per spatial layer
|
|
// how many active temporal layers we have.
|
|
size_t active_tls_[kMaxSpatialLayers] = {};
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
active_tls_[si] = 0;
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
// Layer is enabled iff it has both positive bitrate and framerate target.
|
|
if (bitrate_allocation.GetBitrate(si, ti) > 0 &&
|
|
current_fps_allocation_[si].size() > ti &&
|
|
current_fps_allocation_[si][ti] > 0) {
|
|
++active_tls_[si];
|
|
if (!overshoot_detectors_[si][ti]) {
|
|
overshoot_detectors_[si][ti] =
|
|
absl::make_unique<EncoderOvershootDetector>(kWindowSizeMs);
|
|
frames_since_layout_change_ = 0;
|
|
}
|
|
} else if (overshoot_detectors_[si][ti]) {
|
|
// Layer removed, destroy overshoot detector.
|
|
overshoot_detectors_[si][ti].reset();
|
|
frames_since_layout_change_ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next poll the overshoot detectors and populate the adjusted allocation.
|
|
const int64_t now_ms = rtc::TimeMillis();
|
|
VideoBitrateAllocation adjusted_allocation;
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
const uint32_t spatial_layer_bitrate_bps =
|
|
bitrate_allocation.GetSpatialLayerSum(si);
|
|
|
|
// Adjustment is done per spatial layer only (not per temporal layer).
|
|
double utilization_factor;
|
|
if (frames_since_layout_change_ < kMinFramesSinceLayoutChange) {
|
|
utilization_factor = kDefaultUtilizationFactor;
|
|
} else if (active_tls_[si] == 0 || spatial_layer_bitrate_bps == 0) {
|
|
// No signaled temporal layers, or no bitrate set. Could either be unused
|
|
// spatial layer or bitrate dynamic mode; pass bitrate through without any
|
|
// change.
|
|
utilization_factor = 1.0;
|
|
} else if (active_tls_[si] == 1) {
|
|
// A single active temporal layer, this might mean single layer or that
|
|
// encoder does not support temporal layers. Merge target bitrates for
|
|
// this spatial layer.
|
|
RTC_DCHECK(overshoot_detectors_[si][0]);
|
|
utilization_factor =
|
|
overshoot_detectors_[si][0]->GetUtilizationFactor(now_ms).value_or(
|
|
kDefaultUtilizationFactor);
|
|
} else if (spatial_layer_bitrate_bps > 0) {
|
|
// Multiple temporal layers enabled for this spatial layer. Update rate
|
|
// for each of them and make a weighted average of utilization factors,
|
|
// with bitrate fraction used as weight.
|
|
// If any layer is missing a utilization factor, fall back to default.
|
|
utilization_factor = 0.0;
|
|
for (size_t ti = 0; ti < active_tls_[si]; ++ti) {
|
|
RTC_DCHECK(overshoot_detectors_[si][ti]);
|
|
const absl::optional<double> ti_utilization_factor =
|
|
overshoot_detectors_[si][ti]->GetUtilizationFactor(now_ms);
|
|
if (!ti_utilization_factor) {
|
|
utilization_factor = kDefaultUtilizationFactor;
|
|
break;
|
|
}
|
|
const double weight =
|
|
static_cast<double>(bitrate_allocation.GetBitrate(si, ti)) /
|
|
spatial_layer_bitrate_bps;
|
|
utilization_factor += weight * ti_utilization_factor.value();
|
|
}
|
|
} else {
|
|
RTC_NOTREACHED();
|
|
}
|
|
|
|
// Don't boost target bitrate if encoder is under-using.
|
|
utilization_factor = std::max(utilization_factor, 1.0);
|
|
|
|
// Don't reduce encoder target below 50%, in which case the frame dropper
|
|
// should kick in instead.
|
|
utilization_factor = std::min(utilization_factor, 2.0);
|
|
|
|
if (min_bitrates_bps_[si] > 0 && spatial_layer_bitrate_bps > 0 &&
|
|
min_bitrates_bps_[si] < spatial_layer_bitrate_bps) {
|
|
// Make sure rate adjuster doesn't push target bitrate below minimum.
|
|
utilization_factor = std::min(
|
|
utilization_factor, static_cast<double>(spatial_layer_bitrate_bps) /
|
|
min_bitrates_bps_[si]);
|
|
}
|
|
|
|
// Populate the adjusted allocation with determined utilization factor.
|
|
if (active_tls_[si] == 1 &&
|
|
spatial_layer_bitrate_bps > bitrate_allocation.GetBitrate(si, 0)) {
|
|
// Bitrate allocation indicates temporal layer usage, but encoder
|
|
// does not seem to support it. Pipe all bitrate into a single
|
|
// overshoot detector.
|
|
uint32_t adjusted_layer_bitrate_bps = static_cast<uint32_t>(
|
|
spatial_layer_bitrate_bps / utilization_factor + 0.5);
|
|
adjusted_allocation.SetBitrate(si, 0, adjusted_layer_bitrate_bps);
|
|
} else {
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
if (bitrate_allocation.HasBitrate(si, ti)) {
|
|
uint32_t adjusted_layer_bitrate_bps = static_cast<uint32_t>(
|
|
bitrate_allocation.GetBitrate(si, ti) / utilization_factor + 0.5);
|
|
adjusted_allocation.SetBitrate(si, ti, adjusted_layer_bitrate_bps);
|
|
}
|
|
}
|
|
}
|
|
|
|
// In case of rounding errors, add bitrate to TL0 until min bitrate
|
|
// constraint has been met.
|
|
const uint32_t adjusted_spatial_layer_sum =
|
|
adjusted_allocation.GetSpatialLayerSum(si);
|
|
if (spatial_layer_bitrate_bps > 0 &&
|
|
adjusted_spatial_layer_sum < min_bitrates_bps_[si]) {
|
|
adjusted_allocation.SetBitrate(si, 0,
|
|
adjusted_allocation.GetBitrate(si, 0) +
|
|
min_bitrates_bps_[si] -
|
|
adjusted_spatial_layer_sum);
|
|
}
|
|
|
|
// Update all detectors with the new adjusted bitrate targets.
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
const uint32_t layer_bitrate_bps = adjusted_allocation.GetBitrate(si, ti);
|
|
// Overshoot detector may not exist, eg for ScreenshareLayers case.
|
|
if (layer_bitrate_bps > 0 && overshoot_detectors_[si][ti]) {
|
|
// Number of frames in this layer alone is not cumulative, so
|
|
// subtract fps from any low temporal layer.
|
|
const double fps_fraction =
|
|
static_cast<double>(
|
|
current_fps_allocation_[si][ti] -
|
|
(ti == 0 ? 0 : current_fps_allocation_[si][ti - 1])) /
|
|
VideoEncoder::EncoderInfo::kMaxFramerateFraction;
|
|
|
|
overshoot_detectors_[si][ti]->SetTargetRate(
|
|
DataRate::bps(layer_bitrate_bps),
|
|
fps_fraction * current_total_framerate_fps_, now_ms);
|
|
}
|
|
}
|
|
}
|
|
|
|
return adjusted_allocation;
|
|
}
|
|
|
|
void EncoderBitrateAdjuster::OnEncoderInfo(
|
|
const VideoEncoder::EncoderInfo& encoder_info) {
|
|
// Copy allocation into current state and re-allocate.
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
current_fps_allocation_[si] = encoder_info.fps_allocation[si];
|
|
}
|
|
|
|
// Trigger re-allocation so that overshoot detectors have correct targets.
|
|
AdjustRateAllocation(current_bitrate_allocation_,
|
|
current_total_framerate_fps_);
|
|
}
|
|
|
|
void EncoderBitrateAdjuster::OnEncodedFrame(const EncodedImage& encoded_image,
|
|
int temporal_index) {
|
|
++frames_since_layout_change_;
|
|
// Detectors may not exist, for instance if ScreenshareLayers is used.
|
|
auto& detector =
|
|
overshoot_detectors_[encoded_image.SpatialIndex().value_or(0)]
|
|
[temporal_index];
|
|
if (detector) {
|
|
detector->OnEncodedFrame(encoded_image.size(), rtc::TimeMillis());
|
|
}
|
|
}
|
|
|
|
void EncoderBitrateAdjuster::Reset() {
|
|
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
|
|
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
|
|
overshoot_detectors_[si][ti].reset();
|
|
}
|
|
}
|
|
// Call AdjustRateAllocation() with the last know bitrate allocation, so that
|
|
// the appropriate overuse detectors are immediately re-created.
|
|
AdjustRateAllocation(current_bitrate_allocation_,
|
|
current_total_framerate_fps_);
|
|
}
|
|
|
|
} // namespace webrtc
|