webrtc_m130/webrtc/base/ratetracker.cc
henrikg 91d6edef35 Add RTC_ prefix to (D)CHECKs and related macros.
We must remove dependency on Chromium, i.e. we can't use Chromium's base/logging.h. That means we need to define these macros in WebRTC also when doing Chromium builds. And this causes redefinition.

Alternative solutions:
* Check if we already have defined e.g. CHECK, and don't define them in that case. This makes us depend on include order in Chromium, which is not acceptable.
* Don't allow using the macros in WebRTC headers. Error prone since if someone adds it there by mistake it may compile fine, but later break if a header in added or order is changed in Chromium. That will be confusing and hard to enforce.
* Ensure that headers that are included by an embedder don't include our macros. This would require some heavy refactoring to be maintainable and enforcable.
* Changes in Chromium for this is obviously not an option.

BUG=chromium:468375
NOTRY=true

Review URL: https://codereview.webrtc.org/1335923002

Cr-Commit-Position: refs/heads/master@{#9964}
2015-09-17 07:24:51 +00:00

148 lines
5.3 KiB
C++

/*
* Copyright 2015 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/ratetracker.h"
#include <stddef.h>
#include <algorithm>
#include "webrtc/base/checks.h"
#include "webrtc/base/timeutils.h"
namespace rtc {
RateTracker::RateTracker(
uint32 bucket_milliseconds, size_t bucket_count)
: bucket_milliseconds_(bucket_milliseconds),
bucket_count_(bucket_count),
sample_buckets_(new size_t[bucket_count + 1]),
total_sample_count_(0u),
bucket_start_time_milliseconds_(~0u) {
RTC_CHECK(bucket_milliseconds > 0u);
RTC_CHECK(bucket_count > 0u);
}
RateTracker::~RateTracker() {
delete[] sample_buckets_;
}
double RateTracker::ComputeRateForInterval(
uint32 interval_milliseconds) const {
if (bucket_start_time_milliseconds_ == ~0u) {
return 0.0;
}
uint32 current_time = Time();
// Calculate which buckets to sum up given the current time. If the time
// has passed to a new bucket then we have to skip some of the oldest buckets.
uint32 available_interval_milliseconds = std::min<uint32>(
interval_milliseconds,
bucket_milliseconds_ * static_cast<uint32>(bucket_count_));
// number of old buckets (i.e. after the current bucket in the ring buffer)
// that are expired given our current time interval.
size_t buckets_to_skip;
// Number of milliseconds of the first bucket that are not a portion of the
// current interval.
uint32 milliseconds_to_skip;
if (current_time >
initialization_time_milliseconds_ + available_interval_milliseconds) {
uint32 time_to_skip = current_time - bucket_start_time_milliseconds_ +
static_cast<uint32>(bucket_count_) * bucket_milliseconds_ -
available_interval_milliseconds;
buckets_to_skip = time_to_skip / bucket_milliseconds_;
milliseconds_to_skip = time_to_skip % bucket_milliseconds_;
} else {
buckets_to_skip = bucket_count_ - current_bucket_;
milliseconds_to_skip = 0u;
available_interval_milliseconds =
TimeDiff(current_time, initialization_time_milliseconds_);
}
// If we're skipping all buckets that means that there have been no samples
// within the sampling interval so report 0.
if (buckets_to_skip > bucket_count_ ||
available_interval_milliseconds == 0u) {
return 0.0;
}
size_t start_bucket = NextBucketIndex(current_bucket_ + buckets_to_skip);
// Only count a portion of the first bucket according to how much of the
// first bucket is within the current interval.
size_t total_samples = sample_buckets_[start_bucket] *
(bucket_milliseconds_ - milliseconds_to_skip) /
bucket_milliseconds_;
// All other buckets in the interval are counted in their entirety.
for (size_t i = NextBucketIndex(start_bucket);
i != NextBucketIndex(current_bucket_);
i = NextBucketIndex(i)) {
total_samples += sample_buckets_[i];
}
// Convert to samples per second.
return static_cast<double>(total_samples * 1000u) /
static_cast<double>(available_interval_milliseconds);
}
double RateTracker::ComputeTotalRate() const {
if (bucket_start_time_milliseconds_ == ~0u) {
return 0.0;
}
uint32 current_time = Time();
if (TimeIsLaterOrEqual(current_time, initialization_time_milliseconds_)) {
return 0.0;
}
return static_cast<double>(total_sample_count_ * 1000u) /
static_cast<double>(
TimeDiff(current_time, initialization_time_milliseconds_));
}
size_t RateTracker::TotalSampleCount() const {
return total_sample_count_;
}
void RateTracker::AddSamples(size_t sample_count) {
EnsureInitialized();
uint32 current_time = Time();
// Advance the current bucket as needed for the current time, and reset
// bucket counts as we advance.
for (size_t i = 0u; i <= bucket_count_ &&
current_time >= bucket_start_time_milliseconds_ + bucket_milliseconds_;
++i) {
bucket_start_time_milliseconds_ += bucket_milliseconds_;
current_bucket_ = NextBucketIndex(current_bucket_);
sample_buckets_[current_bucket_] = 0u;
}
// Ensure that bucket_start_time_milliseconds_ is updated appropriately if
// the entire buffer of samples has been expired.
bucket_start_time_milliseconds_ += bucket_milliseconds_ *
((current_time - bucket_start_time_milliseconds_) / bucket_milliseconds_);
// Add all samples in the bucket that includes the current time.
sample_buckets_[current_bucket_] += sample_count;
total_sample_count_ += sample_count;
}
uint32 RateTracker::Time() const {
return rtc::Time();
}
void RateTracker::EnsureInitialized() {
if (bucket_start_time_milliseconds_ == ~0u) {
initialization_time_milliseconds_ = Time();
bucket_start_time_milliseconds_ = initialization_time_milliseconds_;
current_bucket_ = 0u;
// We only need to initialize the first bucket because we reset buckets when
// current_bucket_ increments.
sample_buckets_[current_bucket_] = 0u;
}
}
size_t RateTracker::NextBucketIndex(size_t bucket_index) const {
return (bucket_index + 1u) % (bucket_count_ + 1u);
}
} // namespace rtc