webrtc_m130/modules/video_coding/codecs/test/video_codec_analyzer.cc
Sergey Silkin 5dd493b3da Do not use PostDelayedTask in video codec tester's pacer
PostDelayedTask doesn't guarantee task execution order. For example,
if you post two tasks, A and B, back-to-back using the same delay
there is no guarantee that A will be executed before B.

Re-implemented pacing using sleep(). Changed pacer to compute task
scheduled time instead of delay. Sleep time is calculated right before
task start. This provides better accuracy by accounting for any delays
that may happen after pacing time is computed and before task queue is
ready to run the task.

It is tricky to implement pacer tests using simulated clocks. The test
use system time which make them flacky on low performance bots. Keep
the test disabled by default.

Bug: b/261160916, webrtc:14852
Change-Id: I88e1a2001e6d33cf3bb7fe16730ec28abf90acc8
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/291804
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39302}
2023-02-13 15:07:16 +00:00

193 lines
7.0 KiB
C++

/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/video_codec_analyzer.h"
#include <memory>
#include "api/task_queue/default_task_queue_factory.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_frame.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/time_utils.h"
#include "third_party/libyuv/include/libyuv/compare.h"
namespace webrtc {
namespace test {
namespace {
using Psnr = VideoCodecStats::Frame::Psnr;
Psnr CalcPsnr(const I420BufferInterface& ref_buffer,
const I420BufferInterface& dec_buffer) {
RTC_CHECK_EQ(ref_buffer.width(), dec_buffer.width());
RTC_CHECK_EQ(ref_buffer.height(), dec_buffer.height());
uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
int num_y_samples = dec_buffer.width() * dec_buffer.height();
Psnr psnr;
psnr.y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
psnr.u = libyuv::SumSquareErrorToPsnr(sse_u, num_y_samples / 4);
psnr.v = libyuv::SumSquareErrorToPsnr(sse_v, num_y_samples / 4);
return psnr;
}
} // namespace
VideoCodecAnalyzer::VideoCodecAnalyzer(
ReferenceVideoSource* reference_video_source)
: reference_video_source_(reference_video_source), num_frames_(0) {
sequence_checker_.Detach();
}
void VideoCodecAnalyzer::StartEncode(const VideoFrame& input_frame) {
int64_t encode_start_us = rtc::TimeMicros();
task_queue_.PostTask(
[this, timestamp_rtp = input_frame.timestamp(), encode_start_us]() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_CHECK(frame_num_.find(timestamp_rtp) == frame_num_.end());
frame_num_[timestamp_rtp] = num_frames_++;
int frame_num = frame_num_[timestamp_rtp];
VideoCodecStats::Frame* fs =
stats_.AddFrame(frame_num, timestamp_rtp, /*spatial_idx=*/0);
fs->encode_start = Timestamp::Micros(encode_start_us);
});
}
void VideoCodecAnalyzer::FinishEncode(const EncodedImage& frame) {
int64_t encode_finished_us = rtc::TimeMicros();
task_queue_.PostTask([this, timestamp_rtp = frame.Timestamp(),
spatial_idx = frame.SpatialIndex().value_or(0),
temporal_idx = frame.TemporalIndex().value_or(0),
width = frame._encodedWidth,
height = frame._encodedHeight,
frame_type = frame._frameType,
size_bytes = frame.size(), qp = frame.qp_,
encode_finished_us]() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
if (spatial_idx > 0) {
VideoCodecStats::Frame* fs0 =
stats_.GetFrame(timestamp_rtp, /*spatial_idx=*/0);
VideoCodecStats::Frame* fs =
stats_.AddFrame(fs0->frame_num, timestamp_rtp, spatial_idx);
fs->encode_start = fs0->encode_start;
}
VideoCodecStats::Frame* fs = stats_.GetFrame(timestamp_rtp, spatial_idx);
fs->spatial_idx = spatial_idx;
fs->temporal_idx = temporal_idx;
fs->width = width;
fs->height = height;
fs->size_bytes = static_cast<int>(size_bytes);
fs->qp = qp;
fs->keyframe = frame_type == VideoFrameType::kVideoFrameKey;
fs->encode_time = Timestamp::Micros(encode_finished_us) - fs->encode_start;
fs->encoded = true;
});
}
void VideoCodecAnalyzer::StartDecode(const EncodedImage& frame) {
int64_t decode_start_us = rtc::TimeMicros();
task_queue_.PostTask([this, timestamp_rtp = frame.Timestamp(),
spatial_idx = frame.SpatialIndex().value_or(0),
size_bytes = frame.size(), decode_start_us]() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
VideoCodecStats::Frame* fs = stats_.GetFrame(timestamp_rtp, spatial_idx);
if (fs == nullptr) {
if (frame_num_.find(timestamp_rtp) == frame_num_.end()) {
frame_num_[timestamp_rtp] = num_frames_++;
}
int frame_num = frame_num_[timestamp_rtp];
fs = stats_.AddFrame(frame_num, timestamp_rtp, spatial_idx);
fs->spatial_idx = spatial_idx;
fs->size_bytes = size_bytes;
}
fs->decode_start = Timestamp::Micros(decode_start_us);
});
}
void VideoCodecAnalyzer::FinishDecode(const VideoFrame& frame,
int spatial_idx) {
int64_t decode_finished_us = rtc::TimeMicros();
task_queue_.PostTask([this, timestamp_rtp = frame.timestamp(), spatial_idx,
width = frame.width(), height = frame.height(),
decode_finished_us]() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
VideoCodecStats::Frame* fs = stats_.GetFrame(timestamp_rtp, spatial_idx);
fs->decode_time = Timestamp::Micros(decode_finished_us) - fs->decode_start;
if (!fs->encoded) {
fs->width = width;
fs->height = height;
}
fs->decoded = true;
});
if (reference_video_source_ != nullptr) {
// Copy hardware-backed frame into main memory to release output buffers
// which number may be limited in hardware decoders.
rtc::scoped_refptr<I420BufferInterface> decoded_buffer =
frame.video_frame_buffer()->ToI420();
task_queue_.PostTask([this, decoded_buffer,
timestamp_rtp = frame.timestamp(), spatial_idx]() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
VideoFrame ref_frame = reference_video_source_->GetFrame(
timestamp_rtp, {.width = decoded_buffer->width(),
.height = decoded_buffer->height()});
rtc::scoped_refptr<I420BufferInterface> ref_buffer =
ref_frame.video_frame_buffer()->ToI420();
Psnr psnr = CalcPsnr(*decoded_buffer, *ref_buffer);
VideoCodecStats::Frame* fs =
this->stats_.GetFrame(timestamp_rtp, spatial_idx);
fs->psnr = psnr;
});
}
}
std::unique_ptr<VideoCodecStats> VideoCodecAnalyzer::GetStats() {
std::unique_ptr<VideoCodecStats> stats;
rtc::Event ready;
task_queue_.PostTask([this, &stats, &ready]() mutable {
RTC_DCHECK_RUN_ON(&sequence_checker_);
stats.reset(new VideoCodecStatsImpl(stats_));
ready.Set();
});
ready.Wait(rtc::Event::kForever);
return stats;
}
} // namespace test
} // namespace webrtc