NOTRY=true BUG=webrtc:6156 Review-Url: https://codereview.webrtc.org/2206583002 Cr-Commit-Position: refs/heads/master@{#13619}
384 lines
14 KiB
C++
384 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/base/constructormagic.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/thread_annotations.h"
|
|
#include "webrtc/modules/pacing/paced_sender.h"
|
|
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
|
|
#include "webrtc/system_wrappers/include/critical_section_wrapper.h"
|
|
#include "webrtc/system_wrappers/include/metrics.h"
|
|
#include "webrtc/typedefs.h"
|
|
|
|
namespace {
|
|
enum {
|
|
kTimestampGroupLengthMs = 5,
|
|
kAbsSendTimeFraction = 18,
|
|
kAbsSendTimeInterArrivalUpshift = 8,
|
|
kInterArrivalShift = kAbsSendTimeFraction + kAbsSendTimeInterArrivalUpshift,
|
|
kInitialProbingIntervalMs = 2000,
|
|
kMinClusterSize = 4,
|
|
kMaxProbePackets = 15,
|
|
kExpectedNumberOfProbes = 3
|
|
};
|
|
|
|
static const double kTimestampToMs =
|
|
1000.0 / static_cast<double>(1 << kInterArrivalShift);
|
|
|
|
template <typename K, typename V>
|
|
std::vector<K> Keys(const std::map<K, V>& map) {
|
|
std::vector<K> keys;
|
|
keys.reserve(map.size());
|
|
for (typename std::map<K, V>::const_iterator it = map.begin();
|
|
it != map.end(); ++it) {
|
|
keys.push_back(it->first);
|
|
}
|
|
return keys;
|
|
}
|
|
|
|
uint32_t ConvertMsTo24Bits(int64_t time_ms) {
|
|
uint32_t time_24_bits =
|
|
static_cast<uint32_t>(
|
|
((static_cast<uint64_t>(time_ms) << kAbsSendTimeFraction) + 500) /
|
|
1000) &
|
|
0x00FFFFFF;
|
|
return time_24_bits;
|
|
}
|
|
} // namespace
|
|
|
|
namespace webrtc {
|
|
|
|
void DelayBasedBwe::AddCluster(std::list<Cluster>* clusters, Cluster* cluster) {
|
|
cluster->send_mean_ms /= static_cast<float>(cluster->count);
|
|
cluster->recv_mean_ms /= static_cast<float>(cluster->count);
|
|
cluster->mean_size /= cluster->count;
|
|
clusters->push_back(*cluster);
|
|
}
|
|
|
|
DelayBasedBwe::DelayBasedBwe(RemoteBitrateObserver* observer, Clock* clock)
|
|
: clock_(clock),
|
|
observer_(observer),
|
|
inter_arrival_(),
|
|
estimator_(),
|
|
detector_(OverUseDetectorOptions()),
|
|
incoming_bitrate_(kBitrateWindowMs, 8000),
|
|
total_probes_received_(0),
|
|
first_packet_time_ms_(-1),
|
|
last_update_ms_(-1),
|
|
uma_recorded_(false) {
|
|
RTC_DCHECK(observer_);
|
|
// NOTE! The BitrateEstimatorTest relies on this EXACT log line.
|
|
LOG(LS_INFO) << "RemoteBitrateEstimatorAbsSendTime: Instantiating.";
|
|
network_thread_.DetachFromThread();
|
|
}
|
|
|
|
void DelayBasedBwe::ComputeClusters(std::list<Cluster>* clusters) const {
|
|
Cluster current;
|
|
int64_t prev_send_time = -1;
|
|
int64_t prev_recv_time = -1;
|
|
int last_probe_cluster_id = -1;
|
|
for (std::list<Probe>::const_iterator it = probes_.begin();
|
|
it != probes_.end(); ++it) {
|
|
if (last_probe_cluster_id == -1)
|
|
last_probe_cluster_id = it->cluster_id;
|
|
if (prev_send_time >= 0) {
|
|
int send_delta_ms = it->send_time_ms - prev_send_time;
|
|
int recv_delta_ms = it->recv_time_ms - prev_recv_time;
|
|
if (send_delta_ms >= 1 && recv_delta_ms >= 1) {
|
|
++current.num_above_min_delta;
|
|
}
|
|
if (it->cluster_id != last_probe_cluster_id) {
|
|
if (current.count >= kMinClusterSize)
|
|
AddCluster(clusters, ¤t);
|
|
current = Cluster();
|
|
}
|
|
current.send_mean_ms += send_delta_ms;
|
|
current.recv_mean_ms += recv_delta_ms;
|
|
current.mean_size += it->payload_size;
|
|
++current.count;
|
|
last_probe_cluster_id = it->cluster_id;
|
|
}
|
|
prev_send_time = it->send_time_ms;
|
|
prev_recv_time = it->recv_time_ms;
|
|
}
|
|
if (current.count >= kMinClusterSize)
|
|
AddCluster(clusters, ¤t);
|
|
}
|
|
|
|
std::list<DelayBasedBwe::Cluster>::const_iterator DelayBasedBwe::FindBestProbe(
|
|
const std::list<Cluster>& clusters) const {
|
|
int highest_probe_bitrate_bps = 0;
|
|
std::list<Cluster>::const_iterator best_it = clusters.end();
|
|
for (std::list<Cluster>::const_iterator it = clusters.begin();
|
|
it != clusters.end(); ++it) {
|
|
if (it->send_mean_ms == 0 || it->recv_mean_ms == 0)
|
|
continue;
|
|
int send_bitrate_bps = it->mean_size * 8 * 1000 / it->send_mean_ms;
|
|
int recv_bitrate_bps = it->mean_size * 8 * 1000 / it->recv_mean_ms;
|
|
if (it->num_above_min_delta > it->count / 2 &&
|
|
(it->recv_mean_ms - it->send_mean_ms <= 2.0f &&
|
|
it->send_mean_ms - it->recv_mean_ms <= 5.0f)) {
|
|
int probe_bitrate_bps =
|
|
std::min(it->GetSendBitrateBps(), it->GetRecvBitrateBps());
|
|
if (probe_bitrate_bps > highest_probe_bitrate_bps) {
|
|
highest_probe_bitrate_bps = probe_bitrate_bps;
|
|
best_it = it;
|
|
}
|
|
} else {
|
|
LOG(LS_INFO) << "Probe failed, sent at " << send_bitrate_bps
|
|
<< " bps, received at " << recv_bitrate_bps
|
|
<< " bps. Mean send delta: " << it->send_mean_ms
|
|
<< " ms, mean recv delta: " << it->recv_mean_ms
|
|
<< " ms, num probes: " << it->count;
|
|
break;
|
|
}
|
|
}
|
|
return best_it;
|
|
}
|
|
|
|
DelayBasedBwe::ProbeResult DelayBasedBwe::ProcessClusters(int64_t now_ms) {
|
|
std::list<Cluster> clusters;
|
|
ComputeClusters(&clusters);
|
|
if (clusters.empty()) {
|
|
// If we reach the max number of probe packets and still have no clusters,
|
|
// we will remove the oldest one.
|
|
if (probes_.size() >= kMaxProbePackets)
|
|
probes_.pop_front();
|
|
return ProbeResult::kNoUpdate;
|
|
}
|
|
|
|
std::list<Cluster>::const_iterator best_it = FindBestProbe(clusters);
|
|
if (best_it != clusters.end()) {
|
|
int probe_bitrate_bps =
|
|
std::min(best_it->GetSendBitrateBps(), best_it->GetRecvBitrateBps());
|
|
// Make sure that a probe sent on a lower bitrate than our estimate can't
|
|
// reduce the estimate.
|
|
if (IsBitrateImproving(probe_bitrate_bps)) {
|
|
LOG(LS_INFO) << "Probe successful, sent at "
|
|
<< best_it->GetSendBitrateBps() << " bps, received at "
|
|
<< best_it->GetRecvBitrateBps()
|
|
<< " bps. Mean send delta: " << best_it->send_mean_ms
|
|
<< " ms, mean recv delta: " << best_it->recv_mean_ms
|
|
<< " ms, num probes: " << best_it->count;
|
|
remote_rate_.SetEstimate(probe_bitrate_bps, now_ms);
|
|
return ProbeResult::kBitrateUpdated;
|
|
}
|
|
}
|
|
|
|
// Not probing and received non-probe packet, or finished with current set
|
|
// of probes.
|
|
if (clusters.size() >= kExpectedNumberOfProbes)
|
|
probes_.clear();
|
|
return ProbeResult::kNoUpdate;
|
|
}
|
|
|
|
bool DelayBasedBwe::IsBitrateImproving(int new_bitrate_bps) const {
|
|
bool initial_probe = !remote_rate_.ValidEstimate() && new_bitrate_bps > 0;
|
|
bool bitrate_above_estimate =
|
|
remote_rate_.ValidEstimate() &&
|
|
new_bitrate_bps > static_cast<int>(remote_rate_.LatestEstimate());
|
|
return initial_probe || bitrate_above_estimate;
|
|
}
|
|
|
|
void DelayBasedBwe::IncomingPacketFeedbackVector(
|
|
const std::vector<PacketInfo>& packet_feedback_vector) {
|
|
RTC_DCHECK(network_thread_.CalledOnValidThread());
|
|
if (!uma_recorded_) {
|
|
RTC_LOGGED_HISTOGRAM_ENUMERATION(kBweTypeHistogram,
|
|
BweNames::kSendSideTransportSeqNum,
|
|
BweNames::kBweNamesMax);
|
|
uma_recorded_ = true;
|
|
}
|
|
for (const auto& packet_info : packet_feedback_vector) {
|
|
IncomingPacketInfo(packet_info.arrival_time_ms,
|
|
ConvertMsTo24Bits(packet_info.send_time_ms),
|
|
packet_info.payload_size, 0,
|
|
packet_info.probe_cluster_id);
|
|
}
|
|
}
|
|
|
|
void DelayBasedBwe::IncomingPacketInfo(int64_t arrival_time_ms,
|
|
uint32_t send_time_24bits,
|
|
size_t payload_size,
|
|
uint32_t ssrc,
|
|
int probe_cluster_id) {
|
|
assert(send_time_24bits < (1ul << 24));
|
|
// Shift up send time to use the full 32 bits that inter_arrival works with,
|
|
// so wrapping works properly.
|
|
uint32_t timestamp = send_time_24bits << kAbsSendTimeInterArrivalUpshift;
|
|
int64_t send_time_ms = static_cast<int64_t>(timestamp) * kTimestampToMs;
|
|
|
|
int64_t now_ms = clock_->TimeInMilliseconds();
|
|
// TODO(holmer): SSRCs are only needed for REMB, should be broken out from
|
|
// here.
|
|
incoming_bitrate_.Update(payload_size, arrival_time_ms);
|
|
|
|
if (first_packet_time_ms_ == -1)
|
|
first_packet_time_ms_ = now_ms;
|
|
|
|
uint32_t ts_delta = 0;
|
|
int64_t t_delta = 0;
|
|
int size_delta = 0;
|
|
|
|
bool update_estimate = false;
|
|
uint32_t target_bitrate_bps = 0;
|
|
std::vector<uint32_t> ssrcs;
|
|
{
|
|
rtc::CritScope lock(&crit_);
|
|
|
|
TimeoutStreams(now_ms);
|
|
RTC_DCHECK(inter_arrival_.get());
|
|
RTC_DCHECK(estimator_.get());
|
|
ssrcs_[ssrc] = now_ms;
|
|
|
|
// For now only try to detect probes while we don't have a valid estimate,
|
|
// and make sure the packet was paced. We currently assume that only packets
|
|
// larger than 200 bytes are paced by the sender.
|
|
if (probe_cluster_id != PacketInfo::kNotAProbe &&
|
|
payload_size > PacedSender::kMinProbePacketSize &&
|
|
(!remote_rate_.ValidEstimate() ||
|
|
now_ms - first_packet_time_ms_ < kInitialProbingIntervalMs)) {
|
|
// TODO(holmer): Use a map instead to get correct order?
|
|
if (total_probes_received_ < kMaxProbePackets) {
|
|
int send_delta_ms = -1;
|
|
int recv_delta_ms = -1;
|
|
if (!probes_.empty()) {
|
|
send_delta_ms = send_time_ms - probes_.back().send_time_ms;
|
|
recv_delta_ms = arrival_time_ms - probes_.back().recv_time_ms;
|
|
}
|
|
LOG(LS_INFO) << "Probe packet received: send time=" << send_time_ms
|
|
<< " ms, recv time=" << arrival_time_ms
|
|
<< " ms, send delta=" << send_delta_ms
|
|
<< " ms, recv delta=" << recv_delta_ms << " ms.";
|
|
}
|
|
probes_.push_back(
|
|
Probe(send_time_ms, arrival_time_ms, payload_size, probe_cluster_id));
|
|
++total_probes_received_;
|
|
// Make sure that a probe which updated the bitrate immediately has an
|
|
// effect by calling the OnReceiveBitrateChanged callback.
|
|
if (ProcessClusters(now_ms) == ProbeResult::kBitrateUpdated)
|
|
update_estimate = true;
|
|
}
|
|
if (inter_arrival_->ComputeDeltas(timestamp, arrival_time_ms, now_ms,
|
|
payload_size, &ts_delta, &t_delta,
|
|
&size_delta)) {
|
|
double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
|
|
estimator_->Update(t_delta, ts_delta_ms, size_delta, detector_.State());
|
|
detector_.Detect(estimator_->offset(), ts_delta_ms,
|
|
estimator_->num_of_deltas(), arrival_time_ms);
|
|
}
|
|
|
|
if (!update_estimate) {
|
|
// Check if it's time for a periodic update or if we should update because
|
|
// of an over-use.
|
|
if (last_update_ms_ == -1 ||
|
|
now_ms - last_update_ms_ > remote_rate_.GetFeedbackInterval()) {
|
|
update_estimate = true;
|
|
} else if (detector_.State() == kBwOverusing) {
|
|
rtc::Optional<uint32_t> incoming_rate =
|
|
incoming_bitrate_.Rate(arrival_time_ms);
|
|
if (incoming_rate &&
|
|
remote_rate_.TimeToReduceFurther(now_ms, *incoming_rate)) {
|
|
update_estimate = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (update_estimate) {
|
|
// The first overuse should immediately trigger a new estimate.
|
|
// We also have to update the estimate immediately if we are overusing
|
|
// and the target bitrate is too high compared to what we are receiving.
|
|
const RateControlInput input(detector_.State(),
|
|
incoming_bitrate_.Rate(arrival_time_ms),
|
|
estimator_->var_noise());
|
|
remote_rate_.Update(&input, now_ms);
|
|
target_bitrate_bps = remote_rate_.UpdateBandwidthEstimate(now_ms);
|
|
update_estimate = remote_rate_.ValidEstimate();
|
|
ssrcs = Keys(ssrcs_);
|
|
}
|
|
}
|
|
if (update_estimate) {
|
|
last_update_ms_ = now_ms;
|
|
observer_->OnReceiveBitrateChanged(ssrcs, target_bitrate_bps);
|
|
}
|
|
}
|
|
|
|
void DelayBasedBwe::Process() {}
|
|
|
|
int64_t DelayBasedBwe::TimeUntilNextProcess() {
|
|
const int64_t kDisabledModuleTime = 1000;
|
|
return kDisabledModuleTime;
|
|
}
|
|
|
|
void DelayBasedBwe::TimeoutStreams(int64_t now_ms) {
|
|
for (Ssrcs::iterator it = ssrcs_.begin(); it != ssrcs_.end();) {
|
|
if ((now_ms - it->second) > kStreamTimeOutMs) {
|
|
ssrcs_.erase(it++);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
if (ssrcs_.empty()) {
|
|
// We can't update the estimate if we don't have any active streams.
|
|
inter_arrival_.reset(
|
|
new InterArrival((kTimestampGroupLengthMs << kInterArrivalShift) / 1000,
|
|
kTimestampToMs, true));
|
|
estimator_.reset(new OveruseEstimator(OverUseDetectorOptions()));
|
|
// We deliberately don't reset the first_packet_time_ms_ here for now since
|
|
// we only probe for bandwidth in the beginning of a call right now.
|
|
}
|
|
}
|
|
|
|
void DelayBasedBwe::OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) {
|
|
rtc::CritScope lock(&crit_);
|
|
remote_rate_.SetRtt(avg_rtt_ms);
|
|
}
|
|
|
|
void DelayBasedBwe::RemoveStream(uint32_t ssrc) {
|
|
rtc::CritScope lock(&crit_);
|
|
ssrcs_.erase(ssrc);
|
|
}
|
|
|
|
bool DelayBasedBwe::LatestEstimate(std::vector<uint32_t>* ssrcs,
|
|
uint32_t* bitrate_bps) const {
|
|
// Currently accessed from both the process thread (see
|
|
// ModuleRtpRtcpImpl::Process()) and the configuration thread (see
|
|
// Call::GetStats()). Should in the future only be accessed from a single
|
|
// thread.
|
|
RTC_DCHECK(ssrcs);
|
|
RTC_DCHECK(bitrate_bps);
|
|
rtc::CritScope lock(&crit_);
|
|
if (!remote_rate_.ValidEstimate()) {
|
|
return false;
|
|
}
|
|
*ssrcs = Keys(ssrcs_);
|
|
if (ssrcs_.empty()) {
|
|
*bitrate_bps = 0;
|
|
} else {
|
|
*bitrate_bps = remote_rate_.LatestEstimate();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void DelayBasedBwe::SetMinBitrate(int min_bitrate_bps) {
|
|
// Called from both the configuration thread and the network thread. Shouldn't
|
|
// be called from the network thread in the future.
|
|
rtc::CritScope lock(&crit_);
|
|
remote_rate_.SetMinBitrate(min_bitrate_bps);
|
|
}
|
|
} // namespace webrtc
|